Volume 51 Issue 5
May  2025
Turn off MathJax
Article Contents
ZHANG Q S,LI D Q,YANG J. Influence of vibration on cyclic and thermal runaway characteristics of lithium ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1548-1556 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0267
Citation: ZHANG Q S,LI D Q,YANG J. Influence of vibration on cyclic and thermal runaway characteristics of lithium ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1548-1556 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0267

Influence of vibration on cyclic and thermal runaway characteristics of lithium ion batteries

doi: 10.13700/j.bh.1001-5965.2023.0267
Funds:

The Fundamental Research Funds for the Central Universities (3122024058); Civil Aviation University of China Postgraduate Research Innovation Project (2022YJS009) 

More Information
  • Corresponding author: E-mail:nkzqsong@126.com
  • Received Date: 23 May 2023
  • Accepted Date: 15 Jul 2023
  • Available Online: 28 Jul 2023
  • Publish Date: 25 Jul 2023
  • By analyzing the impact of mechanical vibration on the safety of lithium ion batteries in various application scenarios, such as transportation and aerospace, the 18650 battery was used as a sample, and the.influence of vibration conditions on the internal structure, cyclic aging mechanism, electrical performance, and thermal runaway characteristics of lithium ion batteries was investigated. The results indicate that vibration can significantly induce alterations in the internal microstructure of lithium ion batteries. Prolonged exposure to vibration stress can lead to deformation of the negative electrode collector, resulting in compression on the electrode roll. Additionally, momentary vibration stress can dynamically affect the contact area between the electrode material and the diaphragm, impeding the migration of lithium ions during the embedding and de-embedding processes. Consequently, this exacerbates the fluctuation of Coulomb efficiency and energy efficiency, leading to insufficient discharge under vibration conditions. Furthermore, thermal runaway experiments demonstrate that the time required to trigger thermal runaway shortens as the duration of vibration increases. Compared with that of non-vibrating batteries, the initial explosion time of thermal runaway of batteries subjected to 600 hours of vibration shortens to 72 seconds, and the combustion-induced explosion time shortens to 114 seconds. Meanwhile, the interval between initial and combustion-induced explosions is shortened. Moreover, the instability of the impact force produced by combustion-induced explosion increases.

     

  • loading
  • [1]
    陈农田, 李俊辉, 王志宏, 等. B787-800飞机锂电池起火事故原因及分析[J]. 电池, 2022, 52(2): 204-207.

    CHEN N T, LI J H, WANG Z H, et al. Cause and analysis of lithium battery fire accident of B787-800 aircraft[J]. Battery Bimonthly, 2022, 52(2): 204-207(in Chinese).
    [2]
    庄淡盛. 锂电池在多旋翼无人机应用中的特性[J]. 电子技术与软件工程, 2018(15): 78-80.

    ZHUANG D S. Characteristics of lithium battery in multi-rotor UAV application[J]. Electronic Technology & Software Engineering, 2018(15): 78-80(in Chinese).
    [3]
    宋文龙, 罗秋月, 何艺, 等. 2021年我国电池产销情况[J]. 电池工业, 2022, 26(2): 85-89.

    SONG W L, LUO Q Y, HE Y, et al. Production and sales of batteries in China in 2021[J]. Chinese Battery Industry, 2022, 26(2): 85-89(in Chinese).
    [4]
    张青松, 刘添添, 郝朝龙, 等. 锂离子电池热失控气体快速检测及危险性分析方法[J]. 北京亚洲成人在线一二三四五六区学报, 2023, 49(9): 2227-2233.

    ZHANG Q S, LIU T T, HAO Z L, et al. Rapid detection analysis method of thermal runaway gas composition and risk of lithium ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2227-2233(in Chinese).
    [5]
    张青松, 曲奕润. 循环老化三元锂离子电池热失控气体毒性研究[J]. 北京亚洲成人在线一二三四五六区学报, 2024, 50(6): 1761-1769.

    ZHANG Q S, QU Y R. Study on the toxicity of thermal runaway gas in cyclic aging ternary lithium ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(6): 1761-1769(in Chinese).
    [6]
    FU Y Y, LU S, SHI L, et al. Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure[J]. Energy, 2018, 161: 38-45. doi: 10.1016/j.energy.2018.06.129
    [7]
    LI Y W, JIANG L H, HUANG Z H, et al. Pressure effect on the thermal runaway behaviors of lithium-ion battery in confined space[J]. Fire Technology, 2023, 59(3): 1137-1155. doi: 10.1007/s10694-022-01296-1
    [8]
    张青松, 李东琪, 连晓雪. 涉水锂离子电池的腐蚀与析氢风险研究[J]. 北京亚洲成人在线一二三四五六区学报, 2024, 50(7): 2083-2092.

    ZHANG Q S, LI D Q, LIAN X X. Study of corrosion and hydrogen evolution risk of waded lithium ion-battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(7): 2083-2092(in Chinese).
    [9]
    HOOPER J M, MARCO J, CHOUCHELAMANE G H, et al. Multi-axis vibration durability testing of lithium ion 18650 NCA cylindrical cells[J]. Journal of Energy Storage, 2018, 15: 103-123. doi: 10.1016/j.est.2017.11.006
    [10]
    BRAND M J, SCHUSTER S F, BACH T, et al. Effects of vibrations and shocks on lithium-ion cells[J]. Journal of Power Sources, 2015, 288: 62-69. doi: 10.1016/j.jpowsour.2015.04.107
    [11]
    PARASUMANNA A B K, KARLE U S, SARAF M R. Material characterization and analysis on the effect of vibration and nail penetration on lithium ion battery[J]. World Electric Vehicle Journal, 2019, 10(4): 69. doi: 10.3390/wevj10040069
    [12]
    ZHANG L J, NING Z S, PENG H, et al. Effects of vibration on the electrical performance of lithium-ion cells based on mathematical statistics[J]. Applied Sciences, 2017, 7(8): 802. doi: 10.3390/app7080802
    [13]
    LEE P Y, PARK S, CHO I, et al. Vibration-based degradation effect in rechargeable lithium ion batteries having different cathode materials for railway vehicle application[J]. Engineering Failure Analysis, 2021, 124: 105334. doi: 10.1016/j.engfailanal.2021.105334
    [14]
    SOMERVILLE L, HOOPER J M, MARCO J, et al. Impact of vibration on the surface film of lithium-ion cells[J]. Energies, 2017, 10(6): 741. doi: 10.3390/en10060741
    [15]
    ZHANG L J, MU Z Q, GAO X Y. Coupling analysis and performance study of commercial 18650 lithium-ion batteries under conditions of temperature and vibration[J]. Energies, 2018, 11(10): 2856. doi: 10.3390/en11102856
    [16]
    United Nations. UN manual of tests and criteria part III subsection 38.3[S]. New York and Geneva: United Nations, 2009: T3.
    [17]
    SHI L, LIU B D, YU H Y, et al. Review of CT image reconstruction open source toolkits[J]. Journal of X-Ray Science and Technology, 2020, 28(4): 619-639.
    [18]
    WALDMANN T, GORSE S, SAMTLEBEN T, et al. A mechanical aging mechanism in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(10): A1742. doi: 10.1149/2.1001410jes
    [19]
    PASTOR-FERNÁNDEZ C, WIDANAGE W, MARCO J, et al. Identification and quantification of ageing mechanisms in lithium-ion batteries using the EIS technique[C]//Proceedings of the IEEE Transportation Electrification Conference and Expo. Piscataway: IEEE Press, 2016: 1-6.
    [20]
    ABRAHAM D P, POPPEN S D, JANSEN A N, et al. Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells[J]. Electrochimica Acta, 2004, 49(26): 4763-4775. doi: 10.1016/j.electacta.2004.05.040
    [21]
    HAN X B, LU L G, ZHENG Y J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005. doi: 10.1016/j.etran.2019.100005
    [22]
    贺元骅, 郭君, 王海斌, 等. 振动环境对锂离子电池热失控危险性的影响[J]. 科学技术与工程, 2020, 20(29): 12242-12246. doi: 10.3969/j.issn.1671-1815.2020.29.061

    HE Y H, GUO J, WANG H B, et al. Impact of vibration on thermal runaway risk of lithium-ion battery[J]. Science Technology and Engineering, 2020, 20(29): 12242-12246(in Chinese). doi: 10.3969/j.issn.1671-1815.2020.29.061
    [23]
    HUANG P F, LIU S T, MA J, et al. Comprehensive investigation on the durability and safety performances of lithium-ion batteries under slight mechanical deformation[J]. Journal of Energy Storage, 2023, 66: 107450. doi: 10.1016/j.est.2023.107450
    [24]
    李文华, 邵方旭, 暴二平, 等. 六自由度振动老化条件下锂离子电池的衰退机理诊断与SOH预测[J]. 仪器仪表学报, 2021, 42(8): 62-69.

    LI W H, SHAO F X, BAO E P, et al. Diagnosis of degradation mechanism and SOH prediction of lithium-ion batteries under 6-DOF vibration and aging conditions[J]. Chinese Journal of Scientific Instrument, 2021, 42(8): 62-69(in Chinese).
    [25]
    DUBARRY M, TRUCHOT C, LIAW B Y. Synthesize battery degradation modes via a diagnostic and prognostic model[J]. Journal of Power Sources, 2012, 219: 204-216. doi: 10.1016/j.jpowsour.2012.07.016
    [26]
    任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966.

    REN D S, FENG X N, HAN X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966(in Chinese).
    [27]
    杨娟, 牛江昊, 张青松. 循环老化对锂离子电池热失控气体爆炸危险性影响实验研究[J/OL]. 航空学报, (2023-01-10)[2023-04-04]. http://kns.cnki.net/kcms/detail/11.1929.v.20230331.1412.014.html.

    YANG J, NIU J H, ZHANG Q S. Experimental study on the influence of cyclic aging on the risk of gas explosion caused by thermal runaway in lithium-ion batteries[J/OL]. Acta Aeronautica et Astronautica Sinica, (2023-01-10)[2023-04-04]. http://kns.cnki.net/kcms/detail/11.1929.v.20230331.1412.014.html(in Chinese).
    [28]
    KONG D P, LV H P, PING P, et al. A review of early warning methods of thermal runaway of lithium ion batteries[J]. Journal of Energy Storage, 2023, 64: 107073. doi: 10.1016/j.est.2023.107073
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(593) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return