Volume 51 Issue 5
May  2025
Turn off MathJax
Article Contents
WANG W B,TANG C P,YANG J H,et al. In-orbit operation characteristics of BDS-3 spaceborne atomic clocks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1694-1704 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0266
Citation: WANG W B,TANG C P,YANG J H,et al. In-orbit operation characteristics of BDS-3 spaceborne atomic clocks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1694-1704 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0266

In-orbit operation characteristics of BDS-3 spaceborne atomic clocks

doi: 10.13700/j.bh.1001-5965.2023.0266
More Information
  • Corresponding author: E-mail:cptang@shao.ac.cn
  • Received Date: 23 May 2023
  • Accepted Date: 10 Jul 2023
  • Available Online: 05 Aug 2023
  • Publish Date: 04 Aug 2023
  • In order to evaluate in-orbit operation characteristics of BeiDou-3 Navigation Satellite System (BDS-3) spaceborne atomic clocks, the broadcast clock offset parameters and precise clock offset data released by the International GNSS Service (IGS) Analysis Center were used to analyze the satellite’s broadcast clock offsets, time-varying characteristics of broadcast clock speed, frequency accuracy, and frequency drift rate. The results indicate that the average error of clock offset parameters of the BDS-3 satellite is about 0.41 m, which is the key factor affecting the precision of the satellite space signal. Furthermore, BDS-3 broadcast clock speed parameters fluctuate frequently, so the spaceborne clocks’ high frequency stability has not been brought into full play. The frequency accuracy of BDS-3 spaceborne clocks is poor, but that of the hydrogen clock of the geostationary orbit (GEO) satellite is high. The frequency drift rate of the BDS-3 spaceborne rubidium clock is larger, resulting in too many frequency modulation times and affecting system availability. BDS-3 hydrogen clock has a lower frequency drift rate and higher long-term stability, which indicates advantages in on-board autonomous time-keeping.

     

  • loading
  • [1]
    谭述森. 北斗卫星导航系统的发展与思考[J]. 宇航学报, 2008, 29(2): 391-396. doi: 10.3873/j.issn.1000-1328.2008.02.001

    TAN S S. Development and thought of compass navigation satellite system[J]. Journal of Astronautics, 2008, 29(2): 391-396(in Chinese). doi: 10.3873/j.issn.1000-1328.2008.02.001
    [2]
    林夏, 林宝军, 刘迎春, 等. 一种同轨区域集中的北斗卫星自主导航算法[J]. 宇航学报, 2021, 42(1): 113-121. doi: 10.3873/j.issn.1000-1328.2021.01.012

    LIN X, LIN B J, LIU Y C, et al. A coplanar regional centralized autonomous navigation algorithm for Beidou satellites[J]. Journal of Astronautics, 2021, 42(1): 113-121(in Chinese). doi: 10.3873/j.issn.1000-1328.2021.01.012
    [3]
    王威雄, 董绍武, 武文俊, 等. 北斗三号卫星共视时间比对性能分析[J]. 宇航学报, 2020, 41(5): 569-577. doi: 10.3873/j.issn.1000-1328.2020.05.007

    WANG W X, DONG S W, WU W J, et al. Analysis of common view time comparison by BDS-3 satellite[J]. Journal of Astronautics, 2020, 41(5): 569-577(in Chinese). doi: 10.3873/j.issn.1000-1328.2020.05.007
    [4]
    毛亚, 王潜心, 胡超, 等. 北斗在轨卫星广播星历精度分析[J]. 宇航学报, 2018, 39(9): 1013-1021. doi: 10.3873/j.issn.1000-1328.2018.09.009

    MAO Y, WANG Q X, HU C, et al. Precision analysis of BeiDou satellites broadcast ephemeris[J]. Journal of Astronautics, 2018, 39(9): 1013-1021(in Chinese). doi: 10.3873/j.issn.1000-1328.2018.09.009
    [5]
    廉吉庆, 张文玺, 张金海, 等. 基于iGMAS的北斗导航卫星原子钟性能评估[J]. 真空与低温, 2022, 28(5): 609-614. doi: 10.3969/j.issn.1006-7086.2022.05.016

    LIAN J Q, ZHANG W X, ZHANG J H, et al. Evaluation of BDS atomic frequency standard based on iGMAS[J]. Vacuum and Cryogenics, 2022, 28(5): 609-614(in Chinese). doi: 10.3969/j.issn.1006-7086.2022.05.016
    [6]
    王鹏飞, 王芳, 赵峰, 等. 基于星地双向时间比对数据的北斗三号铷原子钟在轨性能评估[J]. 天文学进展, 2021, 39(4): 555-564. doi: 10.3969/j.issn.1000-8349.2021.04.09

    WANG P F, WANG F, ZHAO F, et al. Performance analysis of BD Ⅲ satellite rubidium atomic clock based on satellite-ground two-way time transfer data[J]. Progress in Astronomy, 2021, 39(4): 555-564(in Chinese). doi: 10.3969/j.issn.1000-8349.2021.04.09
    [7]
    杨宇飞, 杨元喜, 陈金平, 等. 北斗三号星座拟稳钟差测定及其预报[J]. 测绘学报, 2021, 50(12): 1728-1737. doi: 10.11947/j.AGCS.2021.20210084

    YANG Y F, YANG Y X, CHEN J P, et al. Pseudo-stable constellation bias error of BDS-3 and its high-precision prediction[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1728-1737(in Chinese). doi: 10.11947/j.AGCS.2021.20210084
    [8]
    阚昊宇, 胡志刚, 吕逸飞, 等. 利用不同时间同步体制钟差评估北斗三号星载原子钟性能[J]. 武汉大学学报(信息科学版), 2023, 48(4): 604-610.

    KAN H Y, HU Z G, LÜ Y F, et al. Performance evaluation of BDS-3 spaceborne atomic clock using different time synchronization systems[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 604-610(in Chinese).
    [9]
    帅涛, 林宝军, 张军, 等. 北斗导航卫星氢原子钟性能分析评估[J]. 中国科学: 物理学 力学 天文学, 2021, 51(1): 125-134.

    SHUAI T, LIN B J, ZHANG J, et al. Performaces and telemetres analysis of BD satellite passive hydrogen maser[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(1): 125-134(in Chinese).
    [10]
    王宇谱, 吕志平, 王宁. BDS星载原子钟长期性能分析[J]. 测绘学报, 2017, 46(2): 157-169. doi: 10.11947/j.AGCS.2017.20160369

    WANG Y P, LÜ Z P, WANG N. The long-term performance analysis for on-board atomic clocks of BDS[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 157-169(in Chinese). doi: 10.11947/j.AGCS.2017.20160369
    [11]
    丁毅涛, 郭美军. 基于不同机构钟差产品的GNSS星载钟性能分析与评估[J]. 时间频率学报, 2020, 43(1): 72-84.

    DING Y T, GUO M J. Performance analysis and evaluation of GNSS satellite clock based on clock products from different institutions[J]. Journal of Time and Frequency, 2020, 43(1): 72-84(in Chinese).
    [12]
    伏军胜, 贾小林, 刘家龙, 等. BDS-3卫星与其他GNSS系统卫星原子钟性能分析[J]. 真空与低温, 2022, 28(5): 615-622. doi: 10.3969/j.issn.1006-7086.2022.05.017

    FU J S, JIA X L, LIU J L, et al. Performance evaluation and comparison between spaceborne atomic clocks of BDS-3 satellites and other GNSS systems[J]. Vacuum and Cryogenics, 2022, 28(5): 615-622(in Chinese). doi: 10.3969/j.issn.1006-7086.2022.05.017
    [13]
    MONTENBRUCK O, STEIGENBERGER P, HAUSCHILD A. Broadcast versus precise ephemerides: a multi-GNSS perspective[J]. GPS Solutions, 2015, 19(2): 321-333. doi: 10.1007/s10291-014-0390-8
    [14]
    杜兰. GEO卫星精密定轨技术研究[D]. 郑州: 解放军信息工程大学, 2006: 44-50.

    DU L. Research on precise orbit determination technology of GEO satellite[D]. Zhengzhou: PLA Information Engineering University, 2006: 44-50(in Chinese).
    [15]
    HAUSCHILD A, MONTENBRUCK O. Precise real-time navigation of LEO satellites using GNSS broadcast ephemerides[J]. Navigation, 2021, 68(2): 419-432. doi: 10.1002/navi.416
    [16]
    YANG J H, TANG C P, ZHOU S S, et al. High-accuracy clock offsets estimation strategy of BDS-3 using multi-source observations[J]. Remote Sensing, 2022, 14(18): 4674. doi: 10.3390/rs14184674
    [17]
    杨建华, 唐成盼, 宋叶志, 等. GNSS导航电文空间信号测距误差分析[J]. 中国科学: 物理学 力学 天文学, 2021, 51(1): 72-84.

    YANG J H, TANG C P, SONG Y Z, et al. Analysis of signal-in-space ranging error of GNSS navigation message[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(1): 72-84(in Chinese).
    [18]
    YANG Y F, YANG Y X, HU X G, et al. BeiDou-3 broadcast clock estimation by integration of observations of regional tracking stations and inter-satellite links[J]. GPS Solutions, 2021, 25(2): 57. doi: 10.1007/s10291-020-01067-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views(328) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return