Volume 51 Issue 5
May  2025
Turn off MathJax
Article Contents
JI N,LIU J,WANG H R,et al. Simulation analysis and experimental study on stiffness and fatigue life fluctuation of leaf spring rubber bearings[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1726-1734 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0263
Citation: JI N,LIU J,WANG H R,et al. Simulation analysis and experimental study on stiffness and fatigue life fluctuation of leaf spring rubber bearings[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1726-1734 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0263

Simulation analysis and experimental study on stiffness and fatigue life fluctuation of leaf spring rubber bearings

doi: 10.13700/j.bh.1001-5965.2023.0263
More Information
  • Corresponding author: E-mail:lifz@buct.edu.cn
  • Received Date: 23 May 2023
  • Accepted Date: 30 Jun 2023
  • Available Online: 28 Jul 2023
  • Publish Date: 21 Jul 2023
  • The leaf spring rubber bearings are important load-bearing and vibration-absorbing components in heavy trucks and often suffer from short fatigue life and poor durability under cyclic loading conditions. This work took the leaf spring rubber bearing as the research object, calculated its vertical static stiffness, and compared it with the experimental stiffness. The reason why the experimental stiffness curve is folded was explained through bearing forces. Based on the critical plane method and fatigue crack propagation theory, the dynamic heat build-up and fatigue life of the leaf spring rubber bearing under a vertical compressive load of 260 kN were predicted by using a thermo-mechanical coupling analytical approach. The results show that the error between the simulated maximum temperature and the experimental temperature is around 5.0%, and the error between the predicted fatigue life and the mean value of the bench test is 7.5%. Based on the tensile fatigue test data of rubber specimens, a two-parameter Weibull distribution model for crack precursor size is fitted, and the initial size range of microcracks is inferred to be between 29.8 μm and 62.8 μm, with a median of 38.5 μm. The fatigue simulation life of the leaf spring rubber bearing calculated based on the distribution data of the crack precursor size ranges from 18 000 to 39 000 cycles, quantitatively explaining the fluctuation of the bench fatigue test life. This work can provide guidance for the optimal design of the fatigue life of vibration-absorbing rubber products.

     

  • loading
  • [1]
    李腾英, 郑洪喜. 橡胶支座总成注射模的设计[J]. 特种橡胶制品, 2014, 35(5): 65-70.

    LI T Y, ZHENG H X. Design of injection mold for rubber bearing assembly[J]. Special Purpose Rubber Products, 2014, 35(5): 65-70(in Chinese).
    [2]
    ZARRIN-GHALAMI T, FATEMI A, LEE Y L. Fatigue life prediction of an automobile cradle mount[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2013, 6(1): 351-359. doi: 10.4271/2013-01-1009
    [3]
    ZINE A, BENSEDDIQ N, NAÏT ABDELAZIZ M. Rubber fatigue life under multiaxial loading: numerical and experimental investigations[J]. International Journal of Fatigue, 2011, 33(10): 1360-1368. doi: 10.1016/j.ijfatigue.2011.05.005
    [4]
    丁智平, 陈吉平, 宋传江, 等. 橡胶弹性减振元件疲劳裂纹扩展寿命分析[J]. 机械工程学报, 2010, 46(22): 58-64. doi: 10.3901/JME.2010.22.058

    DING Z P, CHEN J P, SONG C J, et al. Analysis of fatigue crack growth life for rubber vibration damper[J]. Journal of Mechanical Engineering, 2010, 46(22): 58-64(in Chinese). doi: 10.3901/JME.2010.22.058
    [5]
    KANSAKE B A, FRIMPONG S. Analytical modelling of dump truck tire dynamic response to haul road surface excitations[J]. International Journal of Mining, Reclamation and Environment, 2020, 34(1): 1-18. doi: 10.1080/17480930.2018.1507608
    [6]
    LI F Z, LIU J P, MARS W V, et al. Crack precursor size for natural rubber inferred from relaxing and non-relaxing fatigue experiments[J]. International Journal of Fatigue, 2015, 80: 50-57. doi: 10.1016/j.ijfatigue.2015.05.011
    [7]
    BARBASH K P, MARS W V. Critical plane analysis of rubber bushing durability under road loads[R]. SAE Technical Paper, 2016.
    [8]
    MARS W V, FATEMI A. Multiaxial fatigue of rubber: Part II: experimental observations and life predictions[J]. Fatigue & Fracture of Engineering Materials & Structures, 2005, 28(6): 523-538.
    [9]
    ZINE A, BENSEDDIQ N, ABDELAZIZ M N, et al. Prediction of rubber fatigue life under multiaxial loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 2006, 29(3): 267-278.
    [10]
    MOHAMEDMEKI Z M, ESMAIL F J, AJEEL E A. Fatigue life analysis of laminated elastomeric bearing pad[J]. Materials Today: Proceedings, 2021, 42: 2361-2368. doi: 10.1016/j.matpr.2020.12.328
    [11]
    NYAABA W, BOLARINWA E O, FRIMPONG S. Durability prediction of an ultra-large mining truck tire using an enhanced finite element method[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(1): 161-169. doi: 10.1177/0954407018795278
    [12]
    MARS W V, CASTANIER M, OSTBERG D, et al. Digital twin for tank track elastomers: predicting self-heating and durability[C]//Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), 2017: 1-10.
    [13]
    HE H, LIU J M, ZHANG Y R, et al. Heat build-up and rolling resistance analysis of a solid tire: experimental observation and numerical simulation with thermo-mechanical coupling method[J]. Polymers, 2022, 14(11): 2210. doi: 10.3390/polym14112210
    [14]
    ROBERTSON C G, TUNNICLIFFE L B, MACIAG L, et al. Characterizing distributions of tensile strength and crack precursor size to evaluate filler dispersion effects and reliability of rubber[J]. Polymers, 2020, 12(1): 203. doi: 10.3390/polym12010203
    [15]
    LIU C, GU B C, CHEN J F, et al. Thermo-mechanical coupling analysis of edge-cracked rubber specimen focusing on the crack tip: experimental observation and numerical simulation[J]. Materials Today Communications, 2022, 31: 103348. doi: 10.1016/j.mtcomm.2022.103348
    [16]
    HE H, ZHANG Q, ZHANG Y R, et al. A comparative study of 85 hyperelastic constitutive models for both unfilled rubber and highly filled rubber nanocomposite material[J]. Nano Materials Science, 2022, 4(2): 64-82. doi: 10.1016/j.nanoms.2021.07.003
    [17]
    WILLETT P R. Heat generation in tires due to the viscoelastic properties of elastomeric components[J]. Rubber Chemistry and Technology, 1974, 47(2): 363-375. doi: 10.5254/1.3540446
    [18]
    LIU C, GU B C, WANG F, et al. Waveform impact on thermo-mechanical fatigue crack growth of a non-crystallizing rubber: experimental observation and numerical simulation[J]. Composites Part B: Engineering, 2023, 255: 110604. doi: 10.1016/j.compositesb.2023.110604
    [19]
    THOMAS A G. Rupture of rubber. V. Cut growth in natural rubber vulcanizates[J]. Journal of Polymer Science, 1958, 31(123): 467-480. doi: 10.1002/pol.1958.1203112324
    [20]
    GUO H, LI F Z, WEN S P, et al. Characterization and quantitative analysis of crack precursor size for rubber composites[J]. Materials, 2019, 12(20): 3442. doi: 10.3390/ma12203442
    [21]
    BHATTACHARYA P, BHATTACHARJEE R. A study on weibull distribution for estimating the parameters[J]. Wind Engineering, 2009, 33(5): 469-476. doi: 10.1260/030952409790291163
    [22]
    HUNEAU B, MASQUELIER I, MARCO Y, et al. Fatigue crack initiation in a carbon black-filled natural rubber[J]. Rubber Chemistry and Technology, 2016, 89(1): 126-141. doi: 10.5254/rct.15.84809
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views(342) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return