| Citation: | HAO D,LIU J X,SU J,et al. Optimization of multilayer thermal insulation structure for high-speed aircraft considering material optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1662-1672 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0261 |
Thermal insulation structure is the key factor to ensure high-speed aircraft work safely and complete various tasks. The multilayer thermal insulation structure has attracted much attention because of its light weight and excellent thermal insulation effect. The performance of the multilayer thermal insulation structure is not only related to the physical size but also closely related to the material optimization and the temperature influence. In this paper, the transient nonlinear heat transfer model of the multilayer thermal insulation structure was established, and the numerical solution strategy of the heat transfer equation was proposed. Then, by considering the material optimization, introducing the temperature variation characteristic of the thermal conductivity of the material, and taking the geometric dimensions and equivalent mechanical properties of the multilayer thermal insulation structures as the optimization constraints, an integrated mechanical-thermal optimization model of the multilayer thermal insulation structure was established. The Monte-Carlo method and the particle swarm method were utilized to obtain the solution. The simulation results show that the proposed optimization model and method can reduce the structural mass by 27.4%. The temperature effect analysis shows that the temperature variation effect has an important influence on the optimization results. If the temperature effect on the material properties is not considered, the optimal design scheme may not meet the temperature design constraints, which further leads to structural failure. Finally, the reliability and rationality of the optimization scheme are verified by the finite element model. The optimization design method of the multilayer thermal insulation structure proposed in the paper provides technical support and lays a foundation for the overall design of high-speed aircraft.
| [1] |
赵玲, 吕国志, 任克亮, 等. 再入飞行器多层隔热结构优化分析[J]. 航空学报, 2007, 28(6): 1345-1350. doi: 10.3321/j.issn:1000-6893.2007.06.012
ZHAO L, LU G Z, REN K L, et al. Structural optimization of multilayer insulation for reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1345-1350(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.06.012
|
| [2] |
程兴华. 高超声速飞行器防热壁板气动热弹性耦合建模与分析[D]. 长沙: 国防科学技术大学, 2012: 1-3.
CHENG X H. Coupled aerothermoelastic modeling and analysis of thermal protection panel for hypersonic vehicles[D]. Changsha: National University of Defense Technology, 2012: 1-3(in Chinese).
|
| [3] |
谢永旺, 夏雨, 许学伟, 等. 航天飞行器热防护系统研究概况及其发展趋势[J]. 空天技术, 2022(4): 73-86.
XIE Y W, XIA Y, XU X W, et al. Research status of thermal protection system for spacecraft and its development trend[J]. Aerospace Technology, 2022(4): 73-86(in Chinese).
|
| [4] |
杭子轩, 戴婷, 李珺. 基于SiC气凝胶的热防护结构隔热性能分析及优化[J]. 导弹与航天运载技术(中英文), 2023(4): 6-14.
HANG Z X, DAI T, LI J. Analysis and optimization of thermal insulation property of a thermal protection structure based on SiC aerogel[J]. Missiles and Space Vehicles, 2023(4): 6-14(in Chinese).
|
| [5] |
叶红, 王志瑾. 高超声速飞行器热防护结构参数优化及对比分析[J]. 航天器环境工程, 2013, 30(5): 516-521. doi: 10.3969/j.issn.1673-1379.2013.05.012
YE H, WANG Z J. The optimization and comparison of thermal protection structures for hypersonic aircraft[J]. Spacecraft Environment Engineering, 2013, 30(5): 516-521(in Chinese). doi: 10.3969/j.issn.1673-1379.2013.05.012
|
| [6] |
KOSTANOVSKII A V, ZEODINOV M G, KOSTANOVSKAYA M E. The determination of thermal conductivity and emissivity of graphite at high temperatures[J]. High Temperature, 2005, 43(5): 793-795. doi: 10.1007/s10740-005-0125-1
|
| [7] |
CHAR M I, CHANG F P, TAI B C. Inverse determination of thermal conductivity by differential quadrature method[J]. International Communications in Heat and Mass Transfer, 2008, 35(2): 113-119. doi: 10.1016/j.icheatmasstransfer.2007.06.006
|
| [8] |
DOMÍNGUEZ-MUÑOZ F, ANDERSON B, CEJUDO-LÓPEZ J M, et al. Uncertainty in the thermal conductivity of insulation materials[J]. Energy and Buildings, 2010, 42(11): 2159-2168. doi: 10.1016/j.enbuild.2010.07.006
|
| [9] |
吴大方, 郑力铭, 潘兵, 等. 非线性热环境下高温合金蜂窝板隔热性能研究[J]. 力学学报, 2012, 44(2): 297-307. doi: 10.6052/0459-1879-2012-2-20120213
WU D F, ZHENG L M, PAN B, et al. Research on heat-shielding properties of superalloy honeycomb panel for non-linear high temperature environment[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 297-307(in Chinese). doi: 10.6052/0459-1879-2012-2-20120213
|
| [10] |
WASZKIELIS K M, BIAŁOBRZEWSKI I, NOWAK K W, et al. Determination of the thermal conductivity of composted material[J]. Measurement, 2014, 58: 441-447. doi: 10.1016/j.measurement.2014.09.006
|
| [11] |
ZHOU Q, WANG P, WU K D, et al. Performance of high-temperature lightweight multilayer insulations[J]. Applied Thermal Engineering, 2022, 211: 118436. doi: 10.1016/j.applthermaleng.2022.118436
|
| [12] |
周祥发, 冯坚, 肖汉宁, 等. 二氧化硅气凝胶隔热复合材料的性能及其瞬态传热模拟[J]. 国防科技大学学报, 2009, 31(2): 36-40.
ZHOU X F, FENG J, XIAO H N, et al. Performance and heat transfer simulation of silica aerogel composites[J]. Journal of National University of Defense Technology, 2009, 31(2): 36-40(in Chinese).
|
| [13] |
ABRAMENKO A N, KALINICHENKO A S, BURTSER Y, et al. Determination of the thermal conductivity of foam aluminum[J]. Journal of Engineering Physics and Thermophysics, 1999, 72(3): 369-373. doi: 10.1007/BF02699196
|
| [14] |
马忠辉, 孙秦, 王小军, 等. 热防护系统多层隔热结构传热分析及性能研究[J]. 宇航学报, 2003, 24(5): 543-546. doi: 10.3321/j.issn:1000-1328.2003.05.021
MA Z H, SUN Q, WANG X J, et al. TPS multi-layer insulation thermal analysis and performance study[J]. Journal of Astronautics, 2003, 24(5): 543-546(in Chinese). doi: 10.3321/j.issn:1000-1328.2003.05.021
|
| [15] |
徐世南, 吴催生. 导弹结构热防护一体化设计与优化[J]. 国防科技大学学报, 2020, 42(2): 78-84. doi: 10.11887/j.cn.202002010
XU S N, WU C S. Design and optimization of structure-thermal protection integrated for missile[J]. Journal of National University of Defense Technology, 2020, 42(2): 78-84(in Chinese). doi: 10.11887/j.cn.202002010
|
| [16] |
柴峻. 临近空间飞行器多层隔热结构传热分析及优化设计[D]. 哈尔滨: 哈尔滨工程大学, 2016: 36-39.
CHAI J. Heat transfer analysis and optimizing design of multi-layer isolate structure for near space aircraft[D]. Harbin: Harbin Engineering University, 2016: 36-39(in Chinese).
|
| [17] |
陈海坤, 姜召阳, 房景臣, 等. 防隔热一体化结构计算模拟研究[J]. 宇航材料工艺, 2009, 39(1): 14-16. doi: 10.3969/j.issn.1007-2330.2009.01.005
CHEN H K, JIANG Z Y, FANG J C, et al. Numerical study of integrated thermal protection/insulation structure[J]. Aerospace Materials & Technology, 2009, 39(1): 14-16(in Chinese). doi: 10.3969/j.issn.1007-2330.2009.01.005
|
| [18] |
余婧. 航天器在轨服务任务规划技术研究[D]. 长沙: 国防科学技术大学, 2015.
YU J. Research on spacecrafts on-oribt servicing mission planning[D]. Changsha: National University of Defense Technology, 2015(in Chinese).
|
| [19] |
SAAD M, BAKER D, REAVES R. Thermal characterization of carbon-carbon composites[C]//Proceedings of the International Mechanical Engineering Congress and Exposition. New York: ASME, 2011: 1233-1241.
|
| [20] |
SUDHIR A, NAGARAJA A M, GURURAJA S. Effective mechanical properties of carbon-carbon composites[C]//Proceedings of the International Mechanical Engineering Congress and Exposition. New York: ASME, 2014: V001T01A017.
|
| [21] |
LIAN M R, SU J, HE Y Y. Heat insulation performance of lattice thermal protection structure with reinforced plate[J]. Journal of Physics: Conference Series, 2021, 2044(1): 012003. doi: 10.1088/1742-6596/2044/1/012003
|
| [22] |
LI G D, ZHANG C R, HU H F, et al. Preparation and mechanical properties of C/SiC nuts and bolts[J]. Materials Science and Engineering: A, 2012, 547: 1-5. doi: 10.1016/j.msea.2012.03.045
|
| [23] |
PATEL M, PRASAD V V B, JAYARAM V. Heat conduction mechanisms in hot pressed ZrB2 and ZrB2-SiC composites[J]. Journal of the European Ceramic Society, 2013, 33(10): 1615-1624. doi: 10.1016/j.jeurceramsoc.2013.03.006
|
| [24] |
NAKAMORI F, OHISHI Y, MUTA H, et al. Mechanical and thermal properties of bulk ZrB2[J]. Journal of Nuclear Materials, 2015, 467: 612-617. doi: 10.1016/j.jnucmat.2015.10.024
|
| [25] |
BOCK V, NILSSON O, BLUMM J, et al. Thermal properties of carbon aerogels[J]. Journal of Non-Crystalline Solids, 1995, 185(3): 233-239. doi: 10.1016/0022-3093(95)00020-8
|
| [26] |
HSIEH T H, HUANG Y S, SHEN M Y. Mechanical properties and toughness of carbon aerogel/epoxy polymer composites[J]. Journal of Materials Science, 2015, 50(8): 3258-3266. doi: 10.1007/s10853-015-8897-0
|
| [27] |
DENG Z S, WANG J, WU A M, et al. High strength SiO2 aerogel insulation[J]. Journal of Non-Crystalline Solids, 1998, 225: 101-104. doi: 10.1016/S0022-3093(98)00106-9
|
| [28] |
CHABI S, ROCHA V G, GARCÍA-TUÑÓN E, et al. Ultralight, strong, three-dimensional SiC structures[J]. ACS Nano, 2016, 10(2): 1871-1876. doi: 10.1021/acsnano.5b05533
|
| [29] |
PARMENTER K E, MILSTEIN F. Mechanical properties of silica aerogels[J]. Journal of Non-Crystalline Solids, 1998, 223(3): 179-189. doi: 10.1016/S0022-3093(97)00430-4
|
| [30] |
MURACA R F, WHITTICK J S. Materials data handbook: aluminum alloy 7075: NASA-CR-123773[R]. Washington, D.C.: NASA, 1972: 45-50.
|
| [31] |
《中国航空材料手册》编辑委员会. 中国航空材料手册(第2卷):变形高温合金、铸造高温合金[M]. 第2版. 北京: 中国标准出版社, 2002: 278-293.
China Aeronautical Materials Handbook Editorial Board. China aeronautical materials handbook (volume 2): deformed high temperature alloy, high temperature alloy[M]. 2nd ed. Beijing: Standards Press of China, 2002: 278-293(in Chinese).
|
| [32] |
《飞机设计手册》总编委会. 飞机设计手册(第3册):材料(上、下)[M]. 北京: 航空工业出版社, 1997: 385-409.
Aircraft Design Handbook General Editorial Board. Aircraft design handbook (volume 3): material (upper and lower)[M]. Beijing: Aviation Industry Press, 1997: 385-409(in Chinese).
|
| [33] |
WANG B H, CHENG L, WU Y H, et al. Research on ultra-high cycle fatigue performance and reliability life analysis of TC4 by laser shock peening[J]. Journal of Physics: Conference Series, 2022, 2174(1): 012037. doi: 10.1088/1742-6596/2174/1/012037
|