Volume 51 Issue 3
Mar.  2025
Turn off MathJax
Article Contents
LIU Y S,TANG X M,REN X M. Prediction of aircraft surface trajectory based on the GRU-IKF model with attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):1028-1036 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0164
Citation: LIU Y S,TANG X M,REN X M. Prediction of aircraft surface trajectory based on the GRU-IKF model with attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):1028-1036 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0164

Prediction of aircraft surface trajectory based on the GRU-IKF model with attention mechanism

doi: 10.13700/j.bh.1001-5965.2023.0164
Funds:

National Key Research and Development Program (2021YFB1600500); National Natural Science Foundation of China (61773202,52072174); National Defense Science and Technology Key Laboratory Foundation of Avionics System Integrated Technology of China Institute of Aeronautical Radio Electronics (6142505180407); Civil Aviation General Aviation Operation Key Laboratory Foundation of China Civil Aviation Management Cadre Institute (CAMICKFJJ-2019-04) 

More Information
  • Corresponding author: E-mail:tangxinmin@nuaa.edu.cn
  • Received Date: 04 Apr 2023
  • Accepted Date: 02 Jun 2023
  • Available Online: 19 Jun 2023
  • Publish Date: 16 Jun 2023
  • The prediction of aircraft taxiing trajectory helps to solve operational problems such as taxiing conflicts and long waiting times at airports, ensuring surface safety while improving service levels and increasing airport throughput. A model is proposed to predict the taxiing trajectory of a surface aircraft based on an attention mechanism that combines gated recurrent units (GRU) and an improved Kalman filter algorithm (IKF). This addresses the current situation where the performance of machine learning models depends on good data sets. In order to better extract data discrepancy features and learn input-to-output mapping relationships, three independent networks of gated recurrent units are first used to capture the future moment motion states and temporal dependencies of the aircraft. An enhanced extended Kalman filter is then fused with the neural network outputs to integrate them into the state prediction and update process, ultimately improving the predicted trajectory sequence accuracy. Finally, the validity of the model was verified using real aircraft taxi trajectories at Lukou Airport. The simulation results show that the proposed model can effectively and accurately predict aircraft taxi trajectories at the field with an overall mean square error of approximately 0.00128. Compared with the single recurrent neural network (RNN), long and short-term memory network (LSTM) and GRU model, the root mean square error (RMSE) is reduced by 72.9%, 54.7% and 39.9% respectively, and the prediction time is 40 ms, which could accurately and quickly predict the taxiing trajectory and provide assistance in reducing the operating load of the airport surface management system.

     

  • loading
  • [1]
    ZHANG X W, YU W Z. Research on the application of Kalman filter algorithm in aircraft trajectory analysis[C]//Proceedings of the 7th International Conference on Intelligent Computing and Signal Processing. Piscataway: IEEE Press, 2022: 196-199.
    [2]
    吕波, 王超. 改进的扩展卡尔曼滤波在航空器4D航迹预测算法中的应用[J]. 计算机应用, 2021, 41(S1): 277-282.

    LU B, WANG C. Application of improved extended Kalman filter in 4D flight path prediction algorithm of aircraft[J]. Journal of Computer Applications, 2021, 41(S1): 277-282(in Chinese).
    [3]
    SCHIMPF N, KNOBLOCK E J, WANG Z, et al. Flight trajectory prediction based on hybrid-recurrent networks[C]//Proceedings of the IEEE Cognitive Communications for Aerospace Applications Workshop. Piscataway: IEEE Press, 2021: 1-6.
    [4]
    PANG Y T, LIU Y M. Conditional generative adversarial networks (CGAN) for aircraft trajectory prediction considering weather effects[C]//Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
    [5]
    陈明强, 傅嘉赟. 基于无迹卡尔曼滤波的飞行航迹预测方法研究[J]. 计算机仿真, 2021, 38(6): 27-30. doi: 10.3969/j.issn.1006-9348.2021.06.006

    CHEN M Q, FU J Y. Research on flight path prediction method based on untraced Kalman filter[J]. Computer Simulation, 2021, 38(6): 27-30(in Chinese). doi: 10.3969/j.issn.1006-9348.2021.06.006
    [6]
    刘浩然, 覃玉华, 邓玉静, 等. 基于双层修正无迹卡尔曼的水下节点定位算法[J]. 仪器仪表学报, 2020, 41(3): 142-149.

    LIU H R, QIN Y H, DENG Y J, et al. An underwater node localization algorithm based on double layer modified unscented Kalman filter[J]. Chinese Journal of Scientific Instrument, 2020, 41(3): 142-149(in Chinese).
    [7]
    尹聚祺, 杨震, 罗亚中, 等. 空间机动目标跟踪的改进自适应IMM算法[J]. 系统工程与电子技术, 2021, 43(12): 3658-3666. doi: 10.12305/j.issn.1001-506X.2021.12.29

    YIN J Q, YANG Z, LUO Y Z, et al. Improved adaptive IMM algorithm for space maneuvering target tracking[J]. Systems Engineering and Electronics, 2021, 43(12): 3658-3666(in Chinese). doi: 10.12305/j.issn.1001-506X.2021.12.29
    [8]
    GUO G, ZHAO S J. 3D multi-object tracking with adaptive cubature Kalman filter for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 512-519. doi: 10.1109/TIV.2022.3158419
    [9]
    QIAO S J, HAN N, ZHU X W, et al. A dynamic trajectory prediction algorithm based on Kalman filter[J]. Acta Electronica Sinica, 2018, 46(2): 418-423.
    [10]
    LIU W S, LIANG X, ZHENG M H. Dynamic model informed human motion prediction based on unscented Kalman filter[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5287-5295. doi: 10.1109/TMECH.2022.3173167
    [11]
    谢磊, 丁达理, 魏政磊, 等. AdaBoost-PSO-LSTM网络实时预测机动轨迹[J]. 系统工程与电子技术, 2021, 43(6): 1651-1658. doi: 10.12305/j.issn.1001-506X.2021.06.23

    XIE L, DING D L, WEI Z L, et al. Real time prediction of maneuver trajectory by AdaBoost-PSO-LSTM network[J]. Systems Engineering and Electronic Technology, 2021, 43(6): 1651-1658(in Chinese). doi: 10.12305/j.issn.1001-506X.2021.06.23
    [12]
    王新, 杨任农, 左家亮. 基于HPSO-TPFENN的目标机轨迹预测[J]. 西北工业大学学报, 2019, 37(3): 612-620. doi: 10.3969/j.issn.1000-2758.2019.03.025

    WANG X, YANG R N, ZUO J L. Trajectory prediction of target aircraft based on HPSO-TPFENN neural network[J]. Journal of Northwestern Polytechnical University, 2019, 37(3): 612-620(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.03.025
    [13]
    MA L, TIAN S. A hybrid CNN-LSTM model for aircraft 4D trajectory prediction[J]. IEEE Access, 2020, 8: 134668-134680. doi: 10.1109/ACCESS.2020.3010963
    [14]
    SHI Z Y, XU M, PAN Q. 4-D flight trajectory prediction with constrained LSTM network[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 7242-7255. doi: 10.1109/TITS.2020.3004807
    [15]
    吉瑞萍, 张程祎, 梁彦, 等. 基于LSTM的弹道导弹主动段轨迹预报[J]. 系统工程与电子技术, 2022, 44(6): 1968-1976. doi: 10.12305/j.issn.1001-506X.2022.06.24

    JI R P, ZHANG C Y, LIANG Y, et al. Trajectory prediction of boost-phase ballistic missile based on LSTM[J]. Systems Engineering and Electronics, 2022, 44(6): 1968-1976(in Chinese). doi: 10.12305/j.issn.1001-506X.2022.06.24
    [16]
    杨春伟, 刘炳琪, 王继平, 等. 基于注意力机制的高超声速飞行器LSTM智能轨迹预测[J]. 兵工学报, 2022, 43(S2): 78-86. doi: 10.12382/bgxb.2022.B002

    YANG C W, LIU B Q, WANG J P, et al. LSTM intelligent trajectory prediction for hypersonic vehicles based on attention mechanism[J]. Acta Armamentarii, 2022, 43(S2): 78-86(in Chinese). doi: 10.12382/bgxb.2022.B002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(1044) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return