Volume 51 Issue 3
Mar.  2025
Turn off MathJax
Article Contents
CHEN Q,AN C,XIE C C,et al. Large deformation prediction and geometric nonlinear aeroelastic analysis based on machine learning algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):943-952 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0111
Citation: CHEN Q,AN C,XIE C C,et al. Large deformation prediction and geometric nonlinear aeroelastic analysis based on machine learning algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):943-952 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0111

Large deformation prediction and geometric nonlinear aeroelastic analysis based on machine learning algorithm

doi: 10.13700/j.bh.1001-5965.2023.0111
Funds:

National Natural Science Foundation of China (12102027); Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology (BYESS2023345) 

More Information
  • Corresponding author: E-mail:ac@cqjj8.com
  • Received Date: 09 Mar 2023
  • Accepted Date: 27 Apr 2023
  • Available Online: 19 May 2023
  • Publish Date: 16 May 2023
  • Large flexible aircraft possess large structural deformation with aerodynamic loads, which makes the dynamic characteristics change obviously. Structural deformation predictions are vital to large flexible aircraft design and aeroelastic simulations. Full-order models like the finite element method have low simulation efficiency. Traditional reduced-order model (ROM) obtains high simulation efficiency but requires large amounts of sample data participating in model building. This study investigates machine learning algorithms to build a prediction model to calculate the static deformation of flexible structures considering geometric nonlinearities. The performance of the prediction models is compared under evaluation with root mean square error (RMSE). It is shown that several machine learning techniques can be applied to the prediction of large deformations. Moreover, a new static aeroelastic analysis method is proposed with a large deformation prediction model and non-planar vortex lattice method (VLM) with high accuracy and efficiency In the end, a single-beam flexible wing model is used, and the prediction model and wind tunnel test's static aeroelastic response are contrasted. The results demonstrate that the proposed method has good performance and great practical application value.

     

  • loading
  • [1]
    PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft[J]. Journal of Aircraft, 2001, 38(1): 88-94. doi: 10.2514/2.2738
    [2]
    EATON A J, HOWCROFT C, COETZEE E B, et al. Numerical continuation of limit cycle oscillations and bifurcations in high-aspect-ratio wings[J]. Aerospace, 2018, 5(3): 78. doi: 10.3390/aerospace5030078
    [3]
    刘燚. 大柔性飞机气动弹性稳定性及动响应分析[D]. 北京: 北京亚洲成人在线一二三四五六区, 2016.

    LIU Y. Aeroelastic stability and response analysis of very fleible aircraft[D]. Beijing: Beihang University, 2016(in Chinese).
    [4]
    TANG D M, DOWELL E H. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings[J]. AIAA Journal, 2001, 39(8): 1430-1441. doi: 10.2514/2.1484
    [5]
    FRULLA G, CESTINO E, MARZOCCA P. Critical behaviour of slender wing configurations[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2010, 224(5): 587-600. doi: 10.1243/09544100JAERO553
    [6]
    AN C, YANG C, XIE C C, et al. Gust load alleviation including geometric nonlinearities based on dynamic linearization of structural ROM[J]. International Journal of Aerospace Engineering, 2019: 3207912.
    [7]
    SHEN Y C, VIZZACCARO A, KESMIA N, et al. Comparison of reduction methods for finite element geometrically nonlinear beam structures[J]. Vibration, 2021, 4(1): 175-204. doi: 10.3390/vibration4010014
    [8]
    黄行蓉, 刘久周, 李琳. 基于非线性模态的复杂系统动力学特性分析方法[J]. 北京亚洲成人在线一二三四五六区学报, 2019, 45(7): 1337-1348.

    HUANG X R, LIU J Z, LI L. Dynamic characteristics analysis method of complex systems based on nonlinear mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1337-1348 (in Chinese).
    [9]
    MCEWAN M I, WRIGHT J R, COOPER J E, et al. A combined modal/finite element analysis technique for the dynamic response of a nonlinear beam to harmonic excitation[J]. Journal of Sound and Vibration, 2001, 243(4): 601-624. doi: 10.1006/jsvi.2000.3434
    [10]
    HOLLKAMP J J, GORDON R W, SPOTTSWOOD S M. Nonlinear modal models for sonic fatigue response prediction: A comparison of methods[J]. Journal of Sound and Vibration, 2005, 284(3/4/5): 1145-1163.
    [11]
    AN C, YANG C, XIE C C, et al. Flutter and gust response analysis of a wing model including geometric nonlinearities based on a modified structural ROM[J]. Chinese Journal of Aeronautics, 2020, 33(1): 48-63. doi: 10.1016/j.cja.2019.07.006
    [12]
    安朝. 大柔性飞行器大柔性飞行器结构建模方法及气动弹性分析研究[D]. 北京: 北京亚洲成人在线一二三四五六区, 2020.

    AN C. Structure modeling methodology and aeroelastic analysis of large flexible aircraft[D]. Beijing: Beihang University, 2020(in Chinese).
    [13]
    MIGNOLET M P, PRZEKOP A, RIZZI S A, et al. A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures[J]. Journal of Sound and Vibration, 2013, 332(10): 2437-2460. doi: 10.1016/j.jsv.2012.10.017
    [14]
    YANG X Y, PANG S, SHEN W, et al. Aero engine fault diagnosis using an optimized extreme learning machine[J]. International Journal of Aerospace Engineering, 2016: 7892875.
    [15]
    HUANG M S, LEI Y Z, LI X F, et al. Damage identification of bridge structures considering temperature variations-based SVM and MFO[J]. Journal of Aerospace Engineering, 2021, 34(2), 04020113-1: 18.
    [16]
    尹明朗, 寇家庆, 张伟伟. 一种高泛化能力的神经网络气动力降阶模型[J]. 空气动力学学报, 2017, 35(2): 205-213.

    YIN M L, KOU J Q, ZHANG W W. A reduced-order aerodynamic model with high generalization capability based on neural network[J]. Acta Aerodynamica Sinica, 2017, 35(2): 205-213(in Chinese).
    [17]
    PATIL M, HODGES D, CESNIK C. Limit cycle oscillations in high-aspect-ratio wings[J]. Journal of Fluids and Structures, 2002, 15(1): 107-132.
    [18]
    XIE C C, LENG J Z, YANG C. Geometrical nonlinear aeroelastic stability analysis of a composite high-aspect-ratio wing[J]. Shock and Vibration, 2008, 15(3/4): 325-333.
    [19]
    MURUA J, PALACIOS R, GRAHAM J M R. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics[J]. Progress in Aerospace Sciences, 2012, 55: 46-72. doi: 10.1016/j.paerosci.2012.06.001
    [20]
    DEMASI L, LIVNE E. Dynamic aeroelasticity of structurally nonlinear configurations using linear modally reduced aerodynamic generalized forces[J]. AIAA Journal, 2009, 47(1): 70-90. doi: 10.2514/1.34797
    [21]
    CORTES C, VAPNIK V. Support vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
    [22]
    FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. doi: 10.1006/jcss.1997.1504
    [23]
    王年华, 鲁鹏, 常兴华, 等. 基于人工神经网络的非结构网格尺度控制方法[J]. 力学学报, 2021, 53(10): 2682-2691. doi: 10.6052/0459-1879-21-334

    WANG N H, LU P, CHANG X H, et al. Unstructured mesh size control method based on artificial neural network[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2682-2691 (in Chinese). doi: 10.6052/0459-1879-21-334
    [24]
    XIE C C, AN C, LIU Y, et al. Static aeroelastic analysis including geometric nonlinearities based on reduced order model[J]. Chinese Journal of Aeronautics, 2017, 30(2): 638-650. doi: 10.1016/j.cja.2016.12.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(7)

    Article Metrics

    Article views(408) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return