| Citation: | LIANG L M,YANG Y,ZHU C K,et al. Fusion of Mobile Vit and inverted gated codec retinal vessel segmentation algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):712-723 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0088 |
An algorithm based on Mobile Vit and inverted gated codec is proposed for retinal vessel segmentation (FMVG-Net), aiming to tackle issues such background noise interference, boundary texture blurring, and challenging extraction of microvascular areas. First, we improve the Mobile Vit module, and realize the double joint feature extraction cleverly in the coding part. Subsequently, we use the multispectral attention module. The module reduces the missing image feature information from the frequency domain dimension, so as to accurately segment the foreground pixel of the vessel. Next, we propose a feature adaptive fusion module to establish the context dependence of vascular texture and improve the sensitivity of vascular segmentation. In order to enhance the precision of retinal vascular picture segmentation, lastly, we have implemented an inverted gated codec module and optimized the codec structure to further collect deep and spatial semantic information. Experiments are performed on the DRIVE, STARE, and CHASE_DB1 datasets,whereby the obtained specificity are
| [1] |
郑宇祥, 郝鹏翼, 吴冬恩, 等. 结合多层特征及空间信息蒸馏的医学影像分割[J]. 北京亚洲成人在线一二三四五六区学报, 2022, 48(8): 1409-1417.
ZHENG Y X, HAO P Y, WU D E, et al. Medical image segmentation based on multi-layer features and spatial information distillation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1409-1417(in Chinese).
|
| [2] |
梁礼明, 余洁, 陈鑫, 等. 跨级融合门控自适应网络用于视网膜血管分割[J]. 北京亚洲成人在线一二三四五六区学报, 2024, 50(4): 1097-1109.
LIANG L M, YU J, CHEN X, et al. Cross-level fusion gated adaptive network for retinal vessel segmentation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(4): 1097-1109(in Chinese).
|
| [3] |
BEKKERS E, DUITS R, BERENDSCHOT T, et al. A multi-orientation analysis approach to retinal vessel tracking[J]. Journal of Mathematical Imaging and Vision, 2014, 49(3): 583-610. doi: 10.1007/s10851-013-0488-6
|
| [4] |
LI Q, YOU J, ZHANG D. Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses[J]. Expert Systems with Applications, 2012, 39(9): 7600-7610. doi: 10.1016/j.eswa.2011.12.046
|
| [5] |
梁礼明, 黄朝林, 石霏, 等. 融合形状先验的水平集眼底图像血管分割[J]. 计算机学报, 2018, 41(7): 1678-1692. doi: 10.11897/SP.J.1016.2018.01678
LIANG L M, HUANG C L, SHI F, et al. Retinal vessel segmentation using level set combined with shape priori[J]. Chinese Journal of Computers, 2018, 41(7): 1678-1692(in Chinese). doi: 10.11897/SP.J.1016.2018.01678
|
| [6] |
ZHANG J, CHEN Y, BEKKERS E, et al. Retinal vessel delineation using a brain-inspired wavelet transform and random forest[J]. Pattern Recognition, 2017, 69: 107-123. doi: 10.1016/j.patcog.2017.04.008
|
| [7] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2015: 234-241.
|
| [8] |
OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL]. (2018-05-20)[2023-02-01]. http://arxiv.org/abs/1804.03999.
|
| [9] |
WANG C, ZHAO Z Y, REN Q Q, et al. Dense U-Net based on patch-based learning for retinal vessel segmentation[J]. Entropy, 2019, 21(2): 168. doi: 10.3390/e21020168
|
| [10] |
LIANG L M, FENG J, ZHOU L S, et al. U-shaped retinal vessel segmentation based on adaptive aggregation of feature information[J]. Interdisciplinary Sciences: Computational Life Sciences, 2022, 14(2): 623-637. doi: 10.1007/s12539-022-00519-x
|
| [11] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
|
| [12] |
MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer[EB/OL]. (2022-03-04)[2023-02-01]. http://arxiv.org/abs/2110.02178?context=cs.
|
| [13] |
JIANG Y, LIANG J, CHENG T T, et al. MTPA_Unet: multi-scale Transformer-position attention retinal vessel segmentation network joint Transformer and CNN[J]. Sensors, 2022, 22(12): 4592. doi: 10.3390/s22124592
|
| [14] |
RUAN J C, XIANG S C, XIE M Y, et al. MALUNet: a multi-attention and light-weight UNet for skin lesion segmentation[C]//Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine. Piscataway: IEEE Press, 2022: 1150-1156.
|
| [15] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
|
| [16] |
HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]//Proceedings of the14th European Conference. Berlin: Springer, 2016: 630-645.
|
| [17] |
QIN Z Q, ZHANG P Y, WU F, et al. FcaNet: frequency channel attention networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2021: 783-792.
|
| [18] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 4700-4708.
|
| [19] |
LIAO T Y, YANG C H, LO Y, et al. HarDNet-DFUS: an enhanced harmonically-connected network for diabetic foot ulcer image segmentation and colonoscopy polyp segmentation[EB/OL]. (2022-09-15)[2023-02-01]. http://arxiv.org/abs/2209.07313.
|
| [20] |
STAAL J, ABRÀMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509. doi: 10.1109/TMI.2004.825627
|
| [21] |
HOOVER A, KOUZNETSOVA V, GOLDBAUM M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J]. IEEE Transactions on Medical Imaging, 2000, 19(3): 203-210. doi: 10.1109/42.845178
|
| [22] |
OWEN C G, RUDNICKA A R, MULLEN R, et al. Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program[J]. Investigative Ophthalmology & Visual Science, 2009, 50(5): 2004-2010.
|
| [23] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2980-2988.
|
| [24] |
YAN Z Q, YANG X, CHENG K T. A three-stage deep learning model for accurate retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(4): 1427-1436. doi: 10.1109/JBHI.2018.2872813
|
| [25] |
WANG D Y, HAYTHAM A, POTTENBURGH J, et al. Hard attention net for automatic retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(12): 3384-3396. doi: 10.1109/JBHI.2020.3002985
|
| [26] |
TCHINDA B S, TCHIOTSOP D, NOUBOM M, et al. Retinal blood vessels segmentation using classical edge detection filters and the neural network[J]. Informatics in Medicine Unlocked, 2021, 23: 100521. doi: 10.1016/j.imu.2021.100521
|
| [27] |
HU X L, WANG L J, CHENG S L, et al. HDC-Net: a hierarchical dilation convolutional network for retinal vessel segmentation[J]. PLoSOne, 2021, 16(9): e0257013. doi: 10.1371/journal.pone.0257013
|
| [28] |
WANG C, ZHAO Z Y, YU Y. Fine retinal vessel segmentation by combining Nest U-net and patch-learning[J]. Soft Computing, 2021, 25(7): 5519-5532. doi: 10.1007/s00500-020-05552-w
|
| [29] |
WU H S, WANG W, ZHONG J F, et al. SCS-net: a scale and context sensitive network for retinal vessel segmentation[J]. Medical Image Analysis, 2021, 70: 102025. doi: 10.1016/j.media.2021.102025
|
| [30] |
LI D Y, PENG L X, PENG S H, et al. Retinal vessel segmentation by using AFNet[J]. The Visual Computer, 2023, 39(5): 1929-1941. doi: 10.1007/s00371-022-02456-8
|
| [31] |
XU X M, WANG Y X, LIANG Y, et al. Retinal vessel automatic segmentation using SegNet[J]. Computational and Mathematical Methods in Medicine, 2022, 2022: 3117455.
|
| [32] |
AURANGZEB K, ALHARTHI R S, HAIDER S I, et al. An efficient and light weight deep learning model for accurate retinal vessels segmentation[J]. IEEE Access, 2023, 11: 23107-23118. doi: 10.1109/ACCESS.2022.3217782
|
| [33] |
KHAN T M, KHAN M A U, REHMAN N U, et al. Width-wise vessel bifurcation for improved retinal vessel segmentation[J]. Biomedical Signal Processing and Control, 2022, 71: 103169. doi: 10.1016/j.bspc.2021.103169
|
| [34] |
梁礼明, 冯骏, 彭仁杰, 等. 融合多标签损失与双注意力的U型视网膜血管分割[J]. 计算机辅助设计与图形学学报, 2023, 25(1): 75-86.
LIANG L M, FENG J, PENG R J. et al. U-shaped retinal vessel segmentation combining multi-label loss and dual attention[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 25(1): 75-86(in Chinese) .
|