| Citation: | CAI S Y,HAO F W,SHI T. Partition based on features of neighborhood points and corresponding point cloud registration of aero-engine damaged blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):784-794 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0081 |
To satisfy the requirements on accuracy and efficiency of point cloud registration of damaged compressor blades a algorithm for partition based on features of neighborhood points and the corresponding accurate point cloud registration of aero-engine damaged blades was proposed. First of all, based on the covariance matrix, a multi-step partition model was employed to define the method to divide feature sub-blocks, and thus obtain effective feature regions. Secondly, a stable n-dimensional feature vector was constructed in accordance with the local curvature, the maximum distance between points, and the angle property of the maximum normal vector; then, by introducing the iterative closest point theory, the minimum Euclidean distance between the corresponding points and that from the point to the surface between the corresponding blocks were established. The accurate position correction of the two models was realized. Finally, the unit quaternion algorithm was used to complete the accurate point cloud registration of damaged blades. Experimental results show that the proposed algorithm can achieve point cloud registration on the surface of the point cloud model of damaged compressor blades, significantly improving the efficiency and accuracy of registration. Moreover, the advantages and robustness of the unit quaternion algorithm are verified through the point cloud database of multiple groups of aero-engine damaged blades.
| [1] |
舒畅, 程铭, 许煜, 等. 航空发动机压气机叶片外物损伤规律研究[J]. 机械工程学报, 2019, 55(13): 87-94. doi: 10.3901/JME.2019.13.087
SHU C, CHENG M, XU Y, et al. Study on foreign object damage regular pattern of aero engine compressor blades[J]. Journal of Mechanical Engineering, 2019, 55(13): 87-94(in Chinese). doi: 10.3901/JME.2019.13.087
|
| [2] |
赵江洪, 孙铭悦, 王殷瑞, 等. 三维点云孔洞修复综述[J]. 测绘科学, 2021, 46(1): 114-123.
ZHAO J H, SUN M Y, WANG Y R, et al. Review of three-dimensional point cloud completion methods[J]. Science of Surveying and Mapping, 2021, 46(1): 114-123(in Chinese).
|
| [3] |
PENG W X, WANG Y N, ZHANG H, et al. Stochastic joint alignment of multiple point clouds for profiled blades 3-D reconstruction[C]//Proceedings of the IEEE Transactions on Industrial Electronics. Piscataway: IEEE Press, 2022: 1682-1693.
|
| [4] |
蔺小军, 吴刚, 单秀峰, 等. 基于叶片截面线CMM测量数据的ICP配准改进算法[J]. 机械工程学报, 2020, 56(2): 1-8. doi: 10.3901/JME.2020.02.001
LIN X J, WU G, SHAN X F, et al. An improved ICP registration algorithm based on CMM measurement data of blade section line[J]. Journal of Mechanical Engineering, 2020, 56(2): 1-8(in Chinese). doi: 10.3901/JME.2020.02.001
|
| [5] |
刘峻峰, 何小妹, 黄翔, 等. ICP算法在叶型点云数据配准中的应用[J]. 航空制造技术, 2019, 62(12): 79-82.
LIU J F, HE X M, HUANG X, et al. Application of ICP algorithm in data registration of blade profile point cloud[J]. Aeronautical Manufacturing Technology, 2019, 62(12): 79-82(in Chinese).
|
| [6] |
XIE H, LI W L, YIN Z P, et al. Variance-minimization iterative matching method for free-form surfaces—part I: theory and method[C]//Proceedings of the IEEE Transactions on Automation Science and Engineering. Piscataway: IEEE Press, 2019: 1181-1191.
|
| [7] |
DING J, LIU Q, SUN P P. A robust registration algorithm of point clouds based on adaptive distance function for surface inspection[J]. Measurement Science and Technology, 2019, 30(7): 075003. doi: 10.1088/1361-6501/ab16ad
|
| [8] |
田吉委, 王耀南, 毛建旭, 等. 复杂曲面机器人三维测量的误配准筛除算法[J]. 仪器仪表学报, 2019, 40(3): 85-92.
TIAN J W, WANG Y N, MAO J X, et al. Misregistration screening algorithm for 3D measurement of complex surface robots[J]. Chinese Journal of Scientific Instrument, 2019, 40(3): 85-92(in Chinese).
|
| [9] |
李聪波, 肖卫洪, 杜彦斌, 等. 基于改进ICP算法的损伤零部件精确配准[J]. 计算机集成制造系统, 2016, 22(04): 1021-1028.
LI C B, XIAO W H, DU Y B, et al. Fine registration method for defective parts based on improved ICP algorithm[J]. Computer Integrated Manufacturing Systems, 2016, 22(04): 1021-1028(in Chinese).
|
| [10] |
GHORBANI H, KHAMENEIFAR F. Accurate registration of point clouds of damaged aeroengine blades[J]. Journal of Manufacturing Science and Engineering, 2021, 143(3): 031012. doi: 10.1115/1.4049335
|
| [11] |
GHORBANI H, KHAMENEIFAR F. Airfoil profile reconstruction from unorganized noisy point cloud data[J]. Journal of Computational Design and Engineering, 2021, 8(2): 740-755. doi: 10.1093/jcde/qwab011
|
| [12] |
赵红壮, 刘瑾, 杨海马, 等. 面向航空损伤叶片点云的分阶段配准研究[J]. 激光技术, 2023, 47(2): 241-246.
ZHAO H Z, LIU J, YANG H M, et al. Research on staged registration of point clouds for aeronautical damaged blades[J]. Laser Technology, 2023, 47(2): 241-246(in Chinese).
|
| [13] |
王文博, 田茂义, 俞家勇, 等. 改进的迭代最近点点云配准[J]. 激光与光电子学进展, 2022, 59(2): 0215007.
WANG W B, TIAN M Y, YU J Y, et al. Improved iterative nearest point point cloud alignment method[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0215007(in Chinese).
|
| [14] |
LI R B, YUAN X P, GAN S, et al. A point cloud registration method based on dual quaternion description with point-linear feature constraints[J]. International Journal of Remote Sensing, 2022, 43(7): 2517-2537. doi: 10.1080/01431161.2022.2064196
|
| [15] |
SCHENKER P. Sensor fusion IV: control paradigms and data structures[C]//Proceedings of the Society of Photo-Optical Instrumentation Engineers. Boston: SPIE, 1992.
|
| [16] |
CHOI W S, KIM Y S, OH S Y, et al. Fast iterative closest point framework for 3D LIDAR data in intelligent vehicle[C]//Proceedings of the IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2012: 1029-1034.
|
| [17] |
YANG J L, LI H D, CAMPBELL D, et al. Go-ICP: a globally optimal solution to 3D ICP point-set registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11): 2241-2254. doi: 10.1109/TPAMI.2015.2513405
|
| [18] |
BERGSTRÖM P, EDLUND O. Robust registration of surfaces using a refined iterative closest point algorithm with a trust region approach[J]. Numerical Algorithms, 2017, 74(3): 755-779. doi: 10.1007/s11075-016-0170-3
|
| [19] |
王宾, 刘林, 侯榆青, 等. 应用改进迭代最近点的三维心脏点云配准[J]. 光学 精密工程, 2020, 28(2): 474-484.
WANG B, LIU L, HOU Y Q, et al. Three-dimensional cardiac point cloud registration by improved iterative closest point method[J]. Optics and Precision Engineering, 2020, 28(2): 474-484(in Chinese).
|
| [20] |
石峰源, 张春明, 姜丽辉, 等. 采用主成分分析的迭代最近点算法优化与验证[J]. 激光与光电子学进展, 2022, 59(22): 2211001.
SHI F Y, ZHANG C M, JIANG L H, et al. Optimization and verification of iterative closest point algorithm using principal component analysis[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2211001(in Chinese).
|
| [21] |
WANG J, HUO S L, LIU Y J, et al. Research of fast point cloud registration method in construction error analysis of hull blocks[J]. International Journal of Naval Architecture and Ocean Engineering, 2020, 12: 605-616. doi: 10.1016/j.ijnaoe.2020.06.006
|
| [22] |
李宇翔, 郭际明, 潘尚毅, 等. 一种基于ISS-SHOT特征的点云配准算法[J]. 测绘通报, 2020(4): 21-26.
LI Y X, GUO J M, PAN S Y, et al. A point cloud registration algorithm based on ISS-SHOT features[J]. Bulletin of Surveying and Mapping, 2020(4): 21-26(in Chinese).
|
| [23] |
张玉燕, 渠文涵, 郭全丽, 等. 基于3D点云平均曲率估算的损伤参数计算[J]. 计量学报, 2018, 39(5): 609-614.
ZHANG Y Y, QU W H, GUO Q L, et al. Damage parameter calculation based on 3D point cloud mean curvature estimation[J]. Acta Metrologica Sinica, 2018, 39(5): 609-614(in Chinese).
|
| [24] |
徐照, 李苏豪, 陈楠, 等. 基于点云的建筑物表面损伤三维重建与属性提取[J]. 土木工程与管理学报, 2018, 35(3): 28-33.
XU Z, LI S H, CHEN N, et al. 3D reconstruction and attribute extraction of building superficial defects based on point-cloud[J]. Journal of Civil Engineering and Management, 2018, 35(3): 28-33(in Chinese).
|