Volume 50 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
YIN J B,XING Y M,WANG S S,et al. Study of performance of topological fin for phase change energy storage[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3274-3282 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0803
Citation: YIN J B,XING Y M,WANG S S,et al. Study of performance of topological fin for phase change energy storage[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3274-3282 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0803

Study of performance of topological fin for phase change energy storage

doi: 10.13700/j.bh.1001-5965.2022.0803
Funds:

Aeronautical Science Foundation of China (20172851018) 

More Information
  • Corresponding author: E-mail:xym505@163.com
  • Received Date: 23 Sep 2022
  • Accepted Date: 16 Feb 2023
  • Available Online: 10 Mar 2023
  • Publish Date: 08 Mar 2023
  • In order to improve the temperature uniformity of the phase change material domain and the heat transfer rate of the finned tube energy storage system, two types of fractal structures and their corresponding fin volume fraction were used as design parameters, and lauric acid was used as the phase change material to carry out topology optimization design. This was done using the Solid Isotropic Material with Penalty method. The thermal conductivity enhancement and temperature uniformity of topology optimization are compared. The findings indicate that the topology optimization has a better thermal conductivity impact and can shorten the overall solidification time by 21.18% and 12.68%, respectively, when the wall temperature is 20 ℃. The phase change material temperature is reduced by 7.33 ℃ and 4.30 ℃, 0.98 ℃ and 3.85 ℃ on average. At the same time, the topology optimization also has better temperature uniformity, and the average variance of phase change material is 33.38% and 72.13% of the corresponding fractal, respectively. When the wall temperature deviates from the design parameters of the topology, the thermal performance does not change. This study provides some reference for fin design.

     

  • loading
  • [1]
    KABIR M, GEMEDA T, PRELLER E, et al. Design and development of a PCM-based two-phase heat exchanger manufactured additively for spacecraft thermal management systems[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121782. doi: 10.1016/j.ijheatmasstransfer.2021.121782
    [2]
    TATSIDJODOUNG P, LE PIERRÈS N, LUO L G. A review of potential materials for thermal energy storage in building applications[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 327-349. doi: 10.1016/j.rser.2012.10.025
    [3]
    WANG S S, XING Y M, HAO Z L, et al. Experimental study on the thermal performance of PCMs based heat sink using higher alcohol/graphite foam[J]. Applied Thermal Engineering, 2021, 198: 117452. doi: 10.1016/j.applthermaleng.2021.117452
    [4]
    HOU X, XING Y M, HAO Z L. Multi-objective optimization of a composite phase change material-based heat sink under non-uniform discrete heating[J]. Applied Thermal Engineering, 2021, 197: 117435. doi: 10.1016/j.applthermaleng.2021.117435
    [5]
    JÄCKEL R, TAPIA F, GUTIÉRREZ-URUETA G, et al. Design of an aeronautic pitot probe with a redundant heating system incorporating phase change materials[J]. Flow Measurement and Instrumentation, 2020, 76: 101817. doi: 10.1016/j.flowmeasinst.2020.101817
    [6]
    SHANMUGASUNDARAM V, RAMALINGAM M, DONOVAN B, et al. Aircraft based pulsed power system thermal management options with energy storage[C]//Proceedings of the 4th International Energy Conversion Engineering Conference and Exhibit (IECEC). Reston: AIAA, 2006: AIAA2006-4025.
    [7]
    SHANMUGASUNDARAM V, RAMALINGAM M, DONOVAN B. Thermal management system with energy storage for an airborne laser power system application[C]//Proceedings of the 5th International Energy Conversion Engineering Conference and Exhibit (IECEC). Reston: AIAA, 2007: AIAA2007-4817.
    [8]
    VELRAJ R, SEENIRAJ R, HAFNER B, et al. Heat transfer enhancement in a latent heat storage system[J]. Solar Energy, 1999, 65: 171-180. doi: 10.1016/S0038-092X(98)00128-5
    [9]
    BABAPOOR A, AZIZI M, KARIMI G. Thermal management of a Li-ion battery using carbon fiber-PCM composites[J]. Applied Thermal Engineering, 2015, 82(2): 281-290.
    [10]
    OPOLOT M, ZHAO C R, LIU M, et al. Influence of cascaded graphite foams on thermal performance of high temperature phase change material storage systems[J]. Applied Thermal Engineering, 2020, 180: 115618. doi: 10.1016/j.applthermaleng.2020.115618
    [11]
    ZHANG H, LI X Y, LIU L Q, et al. Experimental investigation on paraffin melting in high porosity copper foam under centrifugal accelerations[J]. Applied Thermal Engineering, 2020, 178: 115504. doi: 10.1016/j.applthermaleng.2020.115504
    [12]
    ALGARNI S, MELLOULI S, ALQAHTANI T, et al. Experimental investigation of an evacuated tube solar collector incorporating nano-enhanced PCM as a thermal booster[J]. Applied Thermal Engineering, 2020, 180: 115831. doi: 10.1016/j.applthermaleng.2020.115831
    [13]
    XU H T, WANG N, ZHANG C Y, et al. Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit[J]. Applied Thermal Engineering, 2020, 176: 115409. doi: 10.1016/j.applthermaleng.2020.115409
    [14]
    MAHDI J M, LOHRASBI S, GANJI D D, et al. Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 124: 663-676. doi: 10.1016/j.ijheatmasstransfer.2018.03.095
    [15]
    KATESHIA J, LAKHERA V J. Analysis of solar still integrated with phase change material and pin fins as absorbing material[J]. Journal of Energy Storage, 2021, 35: 102292. doi: 10.1016/j.est.2021.102292
    [16]
    AGYENIM F, HEWITT N, EAMES P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615-628. doi: 10.1016/j.rser.2009.10.015
    [17]
    SHEIKHOLESLAMI M, LOHRASBI S, GANJI D D. Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method[J]. Applied Thermal Engineering, 2016, 107: 154-166. doi: 10.1016/j.applthermaleng.2016.06.158
    [18]
    YU C, WU S C, HUANG Y P, et al. Charging performance optimization of a latent heat storage unit with fractal tree-like fins[J]. Journal of Energy Storage, 2020, 30: 101498. doi: 10.1016/j.est.2020.101498
    [19]
    BENDSØE M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 1(4): 193-202. doi: 10.1007/BF01650949
    [20]
    BRUNS T E. Topology optimization of convection-dominated, steady-state heat transfer problems[J]. International Journal of Heat and Mass Transfer, 2007, 50(15-16): 2859-2873. doi: 10.1016/j.ijheatmasstransfer.2007.01.039
    [21]
    PIZZOLATO A, SHARMA A, MAUTE K, et al. Topology optimization for heat transfer enhancement in Latent Heat Thermal Energy Storage[J]. International Journal of Heat and Mass Transfer, 2017, 113: 875-888. doi: 10.1016/j.ijheatmasstransfer.2017.05.098
    [22]
    PIZZOLATO A, SHARMA A, MAUTE K, et al. Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization[J]. Applied Energy, 2017, 208: 210-227. doi: 10.1016/j.apenergy.2017.10.050
    [23]
    TIAN Y, LIU X L, XU Q, et al. Bionic topology optimization of fins for rapid latent heat thermal energy storage[J]. Applied Thermal Engineering, 2021, 194: 117104. doi: 10.1016/j.applthermaleng.2021.117104
    [24]
    HUANG Y P, LIU X D. Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins[J]. Renewable Energy, 2021, 174: 199-217. doi: 10.1016/j.renene.2021.04.066
    [25]
    LUO X M, GU J A, MA H Q, et al. Numerical study on enhanced melting heat transfer of PCM by the combined fractal fins[J]. Journal of Energy Storage, 2022, 45: 103780. doi: 10.1016/j.est.2021.103780
    [26]
    ZHOU M, ROZVANY G. The COC algorithm, Part II: Topological, geometrical and generalized shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1-3): 309-336. doi: 10.1016/0045-7825(91)90046-9
    [27]
    LAZAROV B S, SIGMUND O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6): 765-781. doi: 10.1002/nme.3072
    [28]
    WANG F W, LAZAROV B S, SIGMUND O. On projection methods, convergence and robust formulations in topology optimization[J]. Structural and Multidisciplinary Optimization, 2011, 43(6): 767-784. doi: 10.1007/s00158-010-0602-y
    [29]
    Guo L H, Tang W C. Deep Study and Improvement of the Globally Convergent Version of MMA[J]. Applied Mechanics and Materials, 2014, 635: 1666-1670.
    [30]
    SHMUELI H, ZISKIND G, LETAN R. Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20): 4082-4091. doi: 10.1016/j.ijheatmasstransfer.2010.05.028
    [31]
    ISMAIL K A R, ALVES C L F, MODESTO M S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder[J]. Applied Thermal Engineering, 2001, 21(1): 53-77. doi: 10.1016/S1359-4311(00)00002-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views(1701) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return