Volume 48 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
HU Haimiao, SHEN Liuqing, GAO Likun, et al. Object detection algorithm guided by motion information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1710-1720. doi: 10.13700/j.bh.1001-5965.2022.0291(in Chinese)
Citation: HU Haimiao, SHEN Liuqing, GAO Likun, et al. Object detection algorithm guided by motion information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1710-1720. doi: 10.13700/j.bh.1001-5965.2022.0291(in Chinese)

Object detection algorithm guided by motion information

doi: 10.13700/j.bh.1001-5965.2022.0291
Funds:

National Natural Science Foundation of China 62122011

National Natural Science Foundation of China U21A20514

Key Research and Development Program of Zhejiang Province 2022C01082

More Information
  • Corresponding author: HU Haimiao, E-mail: frank0139@163.com
  • Received Date: 28 Apr 2022
  • Accepted Date: 13 May 2022
  • Publish Date: 17 May 2022
  • Due to the complexity of the scene and the diversity of objects, the objects in the scene of outdoor surveillance video are difficult to detect, which involves such problems like the object is blocked, or the size of object changes. Therefore, the object detection task is still challenging. To improve the accuracy of the object detection algorithm, this paper proposed a method of using motion information to guide the object detection algorithm based on convolutional neural network. Firstly, the motion object detection algorithm is improved to keep the foreground of stationary target in the motion foreground map; secondly, using the feature that the foreground in the motion foreground map can indicate the spatial position of the object, the feature map extracted by the network is fused with the motion information to improve the response value of the possible object area in the feature map; finally, in the detector of the object detection algorithm, a localization branch is introduced. Using the motion foreground map of the video frame, the location reliability of the candidate object is learned, and weighted sum with the classification confidence of the object is used as the final confidence of the object. The detection result is obtained through the non maximum suppression method. Experiments show that the proposed method can improve the accuracy of object detection in the data set collected under the fixed camera.

     

  • loading
  • [1]
    DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(4): 743-761.
    [2]
    DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2005, 1: 886-893.
    [3]
    AHONEN T, HADID A, PIETIKÄINEN M. Face recognition with local binary patterns[C]//European Conference on Computer Vision. Berlin: Springer, 2004: 469-481.
    [4]
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [5]
    SINGLA N. Motion detection based on frame difference method[J]. International Journal of Information & Computation Technology, 2014, 4(15): 1559-1565.
    [6]
    ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[C]//Proceedings of the 17th International Conference on Pattern Recognition. Piscataway: IEEE Press, 2004, 2: 28-31.
    [7]
    BARNICH O, VAN DROOGENBROECK M. ViBe: A universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2010, 20(6): 1709-1724.
    [8]
    PICCARDI M. Background subtraction techniques: A review[C]//2004 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE Press, 2004, 4: 3099-3104.
    [9]
    LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [10]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
    [11]
    REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 7263-7271.
    [12]
    REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-08)[2022-04-08].
    [13]
    BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. Artificial Intelligence, 2020, 4: 1-17.
    [14]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2980-2988.
    [15]
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(1): 142-158.
    [16]
    GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448.
    [17]
    REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2017, 39(6): 1137-1149.
    [18]
    CAI Z, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 6154-6162.
    [19]
    ZHU X, XIONG Y, DAI J, et al. Deep feature flow for video recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 2349-2358.
    [20]
    ZHU X, WANG Y, DAI J, et al. Flow-guided feature aggregation for video object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 408-417.
    [21]
    REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 658-666.
    [22]
    JIANG B, LUO R, MAO J, et al. Acquisition of localization confidence for accurate object detection[C]//European Conference on Computer Vision. Berlin: Springer, 2018: 784-799.
    [23]
    WU S, LI X, WANG X. IoU-aware single-stage object detector for accurate localization[J]. Image and Vision Computing, 2020, 97: 103911.
    [24]
    NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]//Proceedings of the 18th International Conference on Pattern Recognition. Piscataway: IEEE Press, 2006, 3: 850-855.
    [25]
    WANG X, HU H M, ZHANG Y. Pedestrian detection based on spatial attention module for outdoor video surveillance[C]//2019 IEEE 15th International Conference on Multimedia Big Data (BigMM). Piscataway: IEEE Press, 2019: 247-251.
    [26]
    ZHANG Z, WU J, ZHANG X, et al. Multi-target, multi-camera tracking by hierarchical clustering: Recent progress on dukemtmc project[EB/OL]. (2017-11-27)[2022-04-08].
    [27]
    FERRYMAN J, SHAHROKNI A. PETS2009: Dataset and challenge[C]//2009 12th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Piscataway: IEEE Press, 2009: 1-6.
    [28]
    LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]//European Conference on Computer Vision. Berlin: Springer, 2014: 740-755.
    [29]
    FENG C, ZHONG Y, GAO Y, et al. TOOD: Task-aligned one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2021: 3490-3499.
    [30]
    ZHANG H, CHANG H, MA B, et al. Dynamic R-CNN: Towards high quality object detection via dynamic training[C]//European Conference on Computer Vision. Berlin: Springer, 2020: 260-275.
    [31]
    ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 9759-9768.
    [32]
    ZHANG H, WANG Y, DAYOUB F, et al. VarifocalNet: An iou-aware dense object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 8514-8523.
    [33]
    CHEN Q, WANG Y, YANG T, et al. You only look one-level feature[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 13039-13048.
    [34]
    SUN P, ZHANG R, JIANG Y, et al. Sparse R-CNN: End-to-end object detection with learnable proposals[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 14454-14463.
    [35]
    GE Z, LIU S, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[EB/OL]. (2021-08-06)[2022-04-08].
    [36]
    KONG T, SUN F, LIU H, et al. FoveaBox: Beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389-7398.
    [37]
    WU Y, CHEN Y, YUAN L, et al. Rethinking classification and localization for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 10186-10195.
    [38]
    WANG N, GAO Y, CHEN H, et al. NAS-FCOS: Fast neural architecture search for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 11943-11951.
    [39]
    ZHU X, SU W, LU L, et al. Deformable DETR: Deformable transformers for end-to-end object detection[EB/OL]. (2021-03-18)[2022-04-08].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views(586) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return