Volume 48 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
YANG Chao, JIANG Yu, WU Zhiganget al. Numerical simulation of skipping motion of three-dimensional structure based on boundary element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1678-1691. doi: 10.13700/j.bh.1001-5965.2022.0141(in Chinese)
Citation: YANG Chao, JIANG Yu, WU Zhiganget al. Numerical simulation of skipping motion of three-dimensional structure based on boundary element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1678-1691. doi: 10.13700/j.bh.1001-5965.2022.0141(in Chinese)

Numerical simulation of skipping motion of three-dimensional structure based on boundary element method

doi: 10.13700/j.bh.1001-5965.2022.0141
More Information
  • Corresponding author: WU Zhigang, E-mail: wuzhigang@cqjj8.com
  • Received Date: 11 Mar 2022
  • Accepted Date: 27 May 2022
  • Publish Date: 02 Jun 2022
  • In recent years, the water striking aircraft which realizes high-speed maneuvering flight near the water surface by using skipping motion has become one of the hot issues in research, and the solution of high-speed oblique water impact load of three-dimensional structure is the key step of skipping motion numerical simulation. Based on the boundary element method, a time-domain numerical simulation method of water surface skipping of three-dimensional structure considering structural elastic effect is established. The high-speed oblique water impact load is obtained by the boundary element method, and the displacement dynamic response of the structural node is obtained by the direct integration method of the state equation. Moreover, the centroid position and motion speed of the structure are updated by the skipping motion dynamic model. To verify the accuracy of the fluid load solution algorithm of this method, the numerical simulation of high-speed oblique water impact of steel sphere is carried out and compared with the experimental value. The time-domain numerical simulation and variable parameter analysis of skipping motion of three-dimensional rigid spherical crown are carried out. Then, the effects of structural mass, initial height, horizontal throw speed and radius on the skipping motion of the spherical crown are obtained. After considering the elastic effect, the impact load of high-speed oblique water entry decreases, which also has a certain influence on the sliding and jumping motion of the spherical crown.

     

  • loading
  • [1]
    孙士明, 陈玮琪, 王宝寿, 等. 航行体近水面滑跳运动试验研究[J]. 数字海洋与水下攻防, 2019, 2(2): 79-87.

    SUN S M, CHEN W Q, WANG B S, et al. Experimental research on near-water-surface skipping motion of vehicle[J]. Digital Ocean & Underwater Warfare, 2019, 2(2): 79-87(in Chinese).
    [2]
    孙士明, 陈玮琪, 王宝寿. 跨介质航行体研究现状及关键技术[J]. 水中兵器, 2016 (4): 1-7.

    SUN S M, CHEN W Q, WANG B S. Research status and key technologies of cross-media navigation vehicles[J]. Underwater Weapon, 2016(4): 1-7(in Chinese).
    [3]
    裴譞, 张宇文, 李闻白, 等. 跨介质飞行器气/水两相弹道仿真研究[J]. 工程力学, 2010, 27(8): 223-228.

    PEI X, ZHANG Y W, LI W B, et al. Simulation and analysis on the gas/water two-phase ballistics of trans-media aircraft[J]. Engineering Mechanics, 2010, 27(8): 223-228(in Chinese).
    [4]
    王伟, 张宇文, 朱灼. 跨介质飞行器弹道仿真分析[J]. 计算机仿真, 2011, 28(12): 1-4. doi: 10.3969/j.issn.1006-9348.2011.12.001

    WANG W, ZHANG Y W, ZHU Z. Simulation and analysis on ballistic trajectory of trans-media aircraft[J]. Computer Simulation, 2011, 28(12): 1-4(in Chinese). doi: 10.3969/j.issn.1006-9348.2011.12.001
    [5]
    李金洪, 杨安强, 粟凌云. 跨介质UAV水面滑跳转向特性建模与仿真[J]. 鱼雷技术, 2012, 20(6): 401-406.

    LI J H, YANG A Q, SU L Y. Modeling and simulation of dynamic characteristics of slide jump steering trajectory for trans-media UAV[J]. Torpedo Technology, 2012, 20(6): 401-406(in Chinese).
    [6]
    ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies[J]. Journal of Fluid Mechanics, 1993, 246(1): 593-612.
    [7]
    樊征, 刘莹莹. 掠海飞行器主动触水撞水力分析[J]. 固体火箭技术, 2012, 35(6): 722-725.

    FAN Z, LIU Y Y. Analysis on slamming force of active water impact for sea skimming vehicle[J]. Journal of Solid Rocket Technology, 2012, 35(6): 722-725(in Chinese).
    [8]
    XU G D, DUAN W Y, WU G X. Numerical simulation of oblique water entry of an asymmetrical wedge[J]. Ocean Engineering, 2008, 35(16): 1597-1603. doi: 10.1016/j.oceaneng.2008.08.002
    [9]
    FALTINSEN O M, CHEZHIAN M. A generalized Wagner method for three-dimensional slamming[J]. Journal of Ship Research, 2005, 49(4): 279-287. doi: 10.5957/jsr.2005.49.4.279
    [10]
    顾懋祥, 程贯一, 张效慈. 平头旋转壳撞水水弹性效应的研究[J]. 水动力学研究与进展: A辑, 1991, 6(1): 42-51.

    GU M X, CHENG G Y, ZHANG X C. Study on hydroelastic effect of a blunt rotatory shell impacting with water[J]. Journal of Hydrodynamics: Ser. A, 1991, 6(1): 42-51(in Chinese).
    [11]
    TAKAGI K. Influence of elasticity on hydrodynamic impact problem[J]. Journal of the Kansai Society of Naval Architects, Japan, 1994, 222: 97-106.
    [12]
    张岳青, 徐绯, 李建辰, 等. 结构物入水冲击表面压力的模型研究及应用[J]. 机械强度, 2017, 39(1): 33-39.

    ZHANG Y Q, XU F, LI J C, et al. Model study and application on surface pressure measurement of structure water entry[J]. Journal of Mechanical Strength, 2017, 39(1): 33-39(in Chinese).
    [13]
    张岳青, 白治宁, 曾小凡, 等. 楔形和弧形结构入水冲击响应研究[J]. 船舶力学, 2020, 24(3): 400-408.

    ZHANG Y Q, BAI Z N, ZENG X F, et al. Study of water impact response of wedge-and-arc-shaped structures[J]. Journal of Ship Mechanics, 2020, 24(3): 400-408(in Chinese).
    [14]
    MOHAMMAD J, MAURIZIO P. Water entry of compliant slender bodies: Theory and experiments[J]. International Journal of Mechanical Sciences, 2018, 149: 514-529.
    [15]
    WU G X, SUN H, HE Y S. Numerical simulation and experimental study of water entry of a wedge in free fall motion[J]. Journal of Fluids and Structures, 2004, 19(3): 277-289.
    [16]
    WU G X. Numerical simulation of water entry of twin wedges[J]. Journal of Fluids and Structures, 2006, 22(1): 99-108.
    [17]
    BATHE K J. 有限元法[M]. 2版. 轩建平, 译. 北京: 高等教育出版社, 2016.

    BATHE K J. Finite element procedures[M]. 2nd ed. XUAN J P, translated. Beijing: Higher Education Press, 2016(in Chinese).
    [18]
    姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010.

    YAO Z H, WANG H T. Boundary element methods[M]. Beijing: Higher Education Press, 2010(in Chinese).
    [19]
    王永虎, 石秀华, 李文哲, 等. 斜入水高速冲击的理论建模及缓冲分析[J]. 机械科学与技术, 2008, 27(6): 766-769.

    WANG Y H, SHI X H, LI W Z, et al. Modeling and cushioning analysis of oblique water entry with high velocity[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(6): 766-769(in Chinese).
    [20]
    陈占晖, 卢永锦. 高速运动物体砰击水面后的动力学特性研究[J]. 船舶工程, 2009, 31(3): 62-65.

    CHEN Z H, LU Y J. Study on the dynamic characteristics of high-speed object slamming water[J]. Ship Engineering, 2009, 31(3): 62-65(in Chinese).
    [21]
    郑金伟, 宗智. 三维刚体椭圆头结构高速倾斜入水冲击模拟[J]. 船海工程, 2012, 41(3): 7-9.

    ZHENG J W, ZONG Z. 3-dimensional numerical simulation of rigid elliptic structure inclined water-entry at high speed[J]. Ship & Ocean Engineering, 2012, 41(3): 7-9(in Chinese).
    [22]
    SCOLAN Y. Oblique water entry of a three dimensional body[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6(4): 1197-1208.
    [23]
    TSAI H W, WU W F, LAI C L. An experimental study of non-spinning stone-skipping process[J]. Experimental Thermal and Fluid Science, 2021, 123: 1-10.
    [24]
    LI C H, WANG C, WEI Y J, et al. Numerical investigation on the cavity dynamics and deviation characteristics of skipping stones[J]. Journal of Fluids and Structures, 2021, 104: 1-16.
    [25]
    卢炽华, 何友声. 二维弹性结构入水冲击过程中的流固耦合效应[J]. 力学学报, 2000, 32(2): 129-140.

    LU C H, HE Y S. Coupled analysis of nonlinear interaction between fluid and structure during impact[J]. Acta Mechanica Sinica, 2000, 32(2): 129-140(in Chinese).
    [26]
    李井煜, 卢晓平, 赵鹏伟. 直接边界元法解势流速度场问题[J]. 中国舰船研究, 2015, 10(1): 68-75.

    LI J Y, LU X P, ZHAO P W. Direct boundary element method for the problem of potential flow velocity field[J]. Chinese Journal of Ship Research, 2015, 10(1): 68-75(in Chinese).
    [27]
    王献孚. 计算船舶流体力学[M]. 上海: 上海交通大学出版社, 1992.

    WANG X F. Computational ship hydrodynamics[M]. Shanghai: Shanghai Jiaotong University Press, 1992(in Chinese).
    [28]
    闫发锁, 于龙超, 赵九龙, 等. 轴对称体砰击载荷的三维动网格数值计算[J]. 中国海洋大学学报, 2017, 47(5): 113-120.

    YAN F S, YU L C, ZHAO J L, et al. Numerical calculation of the slamming load for axisymmetric geometries using 3D dynamic mesh[J]. Periodical of Ocean University of China, 2017, 47(5): 113-120(in Chinese).
    [29]
    WAGNER V H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Journal of Applied Mathematics and Mechanics, 1932, 12: 193-215.
    [30]
    WARDLAW A B, MORRISON A M, BALDWIN J L. Prediction of impact pressures, forces, and moments during vertical and oblique water entry[R]. [S. l. ]: Naval Surface Weapons Center White Oak Lab Silver Spring Md, 1977.
    [31]
    JOHNSON W, REID S R. Ricochet of spheres off water[J]. Journal of Mechanical Engineering Science, 1975, 17(2): 71-81.
    [32]
    HUTCHINGS I M. The ricochet of spheres and cylinders from the surface of water[J]. International Journal of Mechanical Sciences, 1976, 18(5): 243-247.
    [33]
    是长春. 平板湍流摩阻系数的显式表达式[J]. 航空学报, 1986, 9(6): B299-B302.

    SHI C C. An explicit expression of the turbulent frictional drag coefficient for a flat plate[J]. Acta Aeronautica et Astronautica Sinica, 1986, 9(6): B299-B302(in Chinese).
    [34]
    张森文, 曹开彬. 计算结构动力响应的状态方程直接积分法[J]. 计算力学学报, 2000, 17(1): 94-118.

    ZHANG S W, CAO K B. Direct integration of state equation method for dynamic response of structure[J]. Chinese Journal of Computational Mechanics, 2000, 17(1): 94-118(in Chinese).
    [35]
    方同, 薛璞. 振动理论及应用[M]. 西安: 西北工业大学出版社, 1998.

    FANG T, XUE P. Vibration theory and application[M]. Xi'an: Northwest University of Technology Press, 1998(in Chinese).
    [36]
    诸德超, 邢誉峰, 程伟, 等. 工程振动基础[M]. 北京: 北京亚洲成人在线一二三四五六区出版社, 2004.

    ZHU D C, XING Y F, CHENG W, et al. Engineering vibration foundation[M]. Beijing: Beihang University Press, 2004(in Chinese).
    [37]
    杨超, 吴志刚, 万志强, 等. 飞行器气动弹性原理[M]. 北京: 北京亚洲成人在线一二三四五六区出版社, 2011.

    YANG C, WU Z G, WAN Z Q, et al. Principle of aircraft aeroelasticity[M]. Beijing: Beihang University Press, 2011(in Chinese).
    [38]
    钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 1987.

    QIAN X F, LIN R X, ZHAO Y N. Missile flight mechanics[M]. Beijing: Beijing Institute of Technology Press, 1987(in Chinese).
    [39]
    SOLIMAN A S, REID S R, JOHNSON W. The effect of spherical projectile speed in ricochet off water and sand[J]. International Journal of Mechanical Sciences, 1976, 18(6): 279-284.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(36)

    Article Metrics

    Article views(484) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return