Volume 49 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
HU H R,CHEN S X,WU H,et al. Continuous-discrete maximum correntropy CKF algorithm based on variational Bayes[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2859-2866 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0769
Citation: HU H R,CHEN S X,WU H,et al. Continuous-discrete maximum correntropy CKF algorithm based on variational Bayes[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2859-2866 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0769

Continuous-discrete maximum correntropy CKF algorithm based on variational Bayes

doi: 10.13700/j.bh.1001-5965.2021.0769
Funds:

National Natural Science Foundation of China (61703420,62073337); Natural Science Basic Research Program of Shaanxi (2020JQ-479) 

More Information
  • Corresponding author: E-mail:wuhaostudy@163.com
  • Received Date: 20 Dec 2021
  • Accepted Date: 25 Feb 2022
  • Available Online: 31 Oct 2023
  • Publish Date: 11 Mar 2022
  • To address the problems of unknown covariance of measurement noise and non-Gaussian mutation measurement noise in bearings-only target tracking, a square-root continuous-discrete variational Bayesian maximum correntropy cubature Kalman filter (SRCD-VBMCCKF) algorithm is proposed. Firstly, the target tracking model is established as a continuous state space-discrete measurement space model, which improves the accuracy of target tracking; secondly, the unknown time-varying measurement noise is estimated by the variational Bayes criterion, which improves the adaptability of the algorithm; finally, considering the non-Gaussian mutation noise in the measurement, the robustness factor is constructed by the maximum correntropy criterion, which further enhances the algorithm’s robustness to abnormal measurements. The simulation results show that the proposed algorithm can effectively suppress the unknown time-varying noise and non-Gaussian heavy-tail mutation noise in the measurement. Compared with the traditional filtering algorithm, the proposed algorithm is both adaptive and robust.

     

  • loading
  • [1]
    刘玉双, 赵剡, 吴发林. 基于外定界椭球集员估计的纯方位目标跟踪[J]. 北京亚洲成人在线一二三四五六区学报, 2017, 43(3): 497-505. doi: 10.13700/j.bh.1001-5965.2016.0196

    LIU Y S, ZHAO Y, WU F L. Bearing-only target tracking based on ellipsoidal outer-bounding set-membership estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 497-505(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0196
    [2]
    HE R K, CHEN S X, WU H, et al. Adaptive covariance feedback cubature Kalman filtering for continuous-discrete bearings-only tracking system[J]. IEEE Access, 2018, 7: 2686-2694.
    [3]
    ARASARATNAM I, HAYKIN S R, HURD T R. Cubature Kalman filtering for continuous-discrete systems: Theory and simulations[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 4977-4993. doi: 10.1109/TSP.2010.2056923
    [4]
    CROUSE D F. Cubature Kalman filters for continuous-time dynamic models. Part Ⅱ: A solution based on moment matching[C]//Proceedings of the IEEE Radar Conference. Piscataway: IEEE Press, 2014: 194-199.
    [5]
    KULIKOVA M, KULIKOV G Y. NIRK-based accurate continuous-discrete extended Kalman filters for estimating continuous-time stochastic target tracking models[J]. Journal of Computational and Applied Mathematics, 2017, 316: 260-270. doi: 10.1016/j.cam.2016.08.036
    [6]
    NARASIMHAPPA M, MAHINDRAKAR A D, GUIZILINI V C, et al. MEMS-based IMU drift minimization: Sage husa adaptive robust Kalman filtering[J]. IEEE Sensors Journal, 2020, 20(1): 250-260. doi: 10.1109/JSEN.2019.2941273
    [7]
    SARKKA S, NUMMENMAA A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations[J]. IEEE Transactions on Automatic Control, 2009, 54(3): 596-600. doi: 10.1109/TAC.2008.2008348
    [8]
    SÄRKKÄ S, HARTIKAINEN J. Non-linear noise adaptive Kalman filtering via variational Bayes[C]//Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE Press, 2013: 1-6.
    [9]
    HUANG Y L, HANG Y G, WU Z M, et al. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices[J]. IEEE Transactions on Automatic Control, 2018, 63(2): 594-601.
    [10]
    CHANG G B, LIU M. M-estimator-based robust Kalman filter for systems with process modeling errors and rank deficient measurement models[J]. Nonlinear Dynamics, 2015, 80(3): 1431-1449. doi: 10.1007/s11071-015-1953-0
    [11]
    HUANG W, SHAN H J, XU J S, et al. Robust variable kernel width for maximum correntropy criterion algorithm[J]. Signal Processing, 2021, 182: 107948. doi: 10.1016/j.sigpro.2020.107948
    [12]
    LIU X, CHEN B D, XU B, et al. Maximum correntropy unscented filter[J]. International Journal of Systems Science, 2017, 48(8): 1607-1615. doi: 10.1080/00207721.2016.1277407
    [13]
    卢航, 郝顺义, 彭志颖, 等. 基于MCC的鲁棒高阶CKF在组合导航中的应用[J]. 计算机工程与应用, 2020, 56(1): 257-264. doi: 10.3778/j.issn.1002-8331.1809-0206

    LU H, HAO S Y, PENG Z Y, et al. Application of robust high-degree CKF based on MCC in integrated navigation[J]. Computer Engineering and Applications, 2020, 56(1): 257-264(in Chinese). doi: 10.3778/j.issn.1002-8331.1809-0206
    [14]
    KULIKOV G Y, KULIKOVA M V. Accurate cubature and extended Kalman filtering methods for estimating continuous-time nonlinear stochastic systems with discrete measurements[J]. Applied Numerical Mathematics, 2017, 111: 260-275. doi: 10.1016/j.apnum.2016.09.015
    [15]
    IZANLOO R, FAKOORIAN S A, YAZDI H S, et al. Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise[C]//Proceedings of the Annual Conference on Information Science and Systems. Piscataway: IEEE Press, 2016: 500-505.
    [16]
    张敬艳, 修建娟, 董凯. 噪声非高斯条件下基于最大相关熵准则的容积滤波算法[J]. 兵器装备工程学报, 2021, 42(8): 245-250. doi: 10.11809/bqzbgcxb2021.08.039

    ZHANG J Y, XIU J J, DONG K. Maximum correntropy cubature Kalman filter under non-Gaussian noise[J]. Journal of Ordnance Equipment Engineering, 2021, 42(8): 245-250(in Chinese). doi: 10.11809/bqzbgcxb2021.08.039
    [17]
    WANG G Q, LI N, ZHANG Y G. Maximum correntropy unscented Kalman and information filters for non-Gaussian measurement noise[J]. Journal of the Franklin Institute, 2017, 354(18): 8659-8677. doi: 10.1016/j.jfranklin.2017.10.023
    [18]
    ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269. doi: 10.1109/TAC.2009.2019800
    [19]
    彭美康, 郭蕴华, 汪敬东, 等. 基于鲁棒容积卡尔曼滤波的自适应目标跟踪算法[J]. 控制理论与应用, 2020, 37(4): 793-800.

    PENG M K, GUO Y H, WANG J D, et al. Adaptive target tracking algorithm based on robust cubature Kalman filter[J]. Control Theory & Applications, 2020, 37(4): 793-800(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(862) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return