Volume 49 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
ZHOU K,CHEN W J,CHEN W H,et al. Extended subtraction speech enhancement based on cubic spline interpolation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2826-2834 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0744
Citation: ZHOU K,CHEN W J,CHEN W H,et al. Extended subtraction speech enhancement based on cubic spline interpolation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2826-2834 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0744

Extended subtraction speech enhancement based on cubic spline interpolation

doi: 10.13700/j.bh.1001-5965.2021.0744
Funds:

National Natural Science Foundation of China (51975002) 

More Information
  • Corresponding author: E-mail:wjchen@ahu.edu.cn
  • Received Date: 12 Dec 2021
  • Accepted Date: 05 Apr 2022
  • Available Online: 31 Oct 2023
  • Publish Date: 21 Apr 2022
  • The speech recognition system is susceptible to noise. In order to filter noise, traditional speech enhancement methods such as spectral subtraction are often used by researchers, but these methods are troubled by “music noise”. To solve this problem, a speech enhancement algorithm based on cubic spline interpolation is proposed in this paper. Firstly, speech is subjected to the fractional Fourier transform, spectral subtraction is employed to preprocess noisy speech, and the Wiener filter noise estimator is utilized to realize the iterative update of noise. Secondly, the speech with noise and the estimated noise is functioned by cubic spline interpolation. A geometric spectrum subtraction algorithm is then used to process the functional speech with noise and the estimated noise to produce the pure speech. The simulation results show that compared with the traditional speech noise reduction algorithm, the proposed algorithm has an obvious effect on improving the “music noise” problem, and also greatly improves speech intelligibility and speech quality.

     

  • loading
  • [1]
    WANG L L, HU X, HU J, et al. Research on control system of an exoskeleton upper-limb rehabilitation robot[J]. Journal of Biomedical Engineering, 2016, 33(6): 1168-1175.
    [2]
    LAVANYA T, NAGARAJAN T, VIJAYALAKSHMI P. Multi-level single-channel speech enhancement using a unified framework for estimating magnitude and phase spectra[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 1315-1327. doi: 10.1109/TASLP.2020.2986877
    [3]
    DROPPO J. Single channel enhancement for speech recognition [C]//Proceedings of the 2008 Hands-Free Speech Communication and Microphone Arrays. Piscataway: IEEE Press, 2008: 93-97.
    [4]
    WANG D X, YIN F L, ZHANG H C. Experiment evaluation of microphone array placement for speech enhancement[C]//Proceedings of the 6th International Symposium on Test and Measurement. Dalian: ISTM, 2005: 1583-1586.
    [5]
    BOLL S F, FPROCESSING S. Suppression of acoustic noise in speech using spectral subtraction[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, 27(2): 113-120. doi: 10.1109/TASSP.1979.1163209
    [6]
    JAMIESON D G, BRENNAN R L, CORNELISSE L E. Evaluation of a speech enhancement strategy with normal-hearing and hearing-impaired listeners[J]. Ear and Hearing, 1995, 16(3): 274-286. doi: 10.1097/00003446-199506000-00004
    [7]
    FLANAGAN J L, JOHNSTON J D, ZAHN R, et al. Computer-steered microphone arrays for sound transduction in large rooms[J]. The Journal of the Acoustical Society of America, 1985, 78(5): 1508-1518. doi: 10.1121/1.392786
    [8]
    ZELINSKI R. A microphone array with adaptive post-filtering for noise reduction in reverberant rooms[C]//Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE Press, 2002: 2578-2581.
    [9]
    GNANAMANICKAM J, NATARAJAN Y, SRI PREETHAA K R. A hybrid speech enhancement algorithm for voice assistance application[J]. Sensors, 2021, 21(21): 7025. doi: 10.3390/s21217025
    [10]
    张晓艳, 张天骐, 葛宛营, 等. 联合深度神经网络和凸优化的单通道语音增强算法[J]. 声学学报, 2021, 46(3): 471-480.

    ZHANG X Y, ZHANG T Q, GE W Y, et al. Monaural speech enhancement combining deep neural network and convex optimation[J]. Acta Acustica, 2021, 46(3): 471-480(in Chinese).
    [11]
    BEROUTI M, SCHWARTZ R, MAKHOUL J. Enhancement of speech corrupted by acoustic noise[C]//Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE Press, 2003: 208-211.
    [12]
    LU Y, LOIZOU P C. A geometric approach to spectral subtraction[J]. Speech Communication, 2008, 50(6): 453-466. doi: 10.1016/j.specom.2008.01.003
    [13]
    WEI Y, ZENG Y M, LI C. Single-channel speech enhancement based on subband spectral entropy[J]. Journal of the Audio Engineering Society, 2018, 66(3): 100-113. doi: 10.17743/jaes.2018.0003
    [14]
    SIM B L, TONG Y C, CHANG J S, et al. A parametric formulation of the generalized spectral subtraction method[J]. IEEE Transactions on Speech and Audio Processing, 1998, 6(4): 328-337. doi: 10.1109/89.701361
    [15]
    MURAKAMI T, ISHIDA Y A. Adaptive filtering for attenuating musical noise caused by spectral subtraction[C]//Proceedings of the 9th International Conference on Spoken Language Processing. Baixas: ISCA, 2006: 1443.
    [16]
    宋智威, 熊成林, 黄路, 等. 基于牛顿插值的单相整流器功率前馈无差拍控制[J]. 电网技术, 2018, 42(11): 3623-3629.

    SONG Z W, XIONG C L, HUANG L, et al. Power feedback-forward and deadbeat control of single-phase rectifier based on Newton interpolation[J]. Power System Technology, 2018, 42(11): 3623-3629(in Chinese).
    [17]
    牛少彰, 钮心忻, 杨义先, 等. 基于拉格朗日插值公式的数字水印分存算法[J]. 北京邮电大学学报, 2003, 26(3): 8-11.

    NIU S Z, NIU X X, YANG Y X, et al. Digital watermarking sharing algorithm based on Lagrange interpolation formula[J]. Journal of Beijing University of Posts and Telecommunications, 2003, 26(3): 8-11(in Chinese).
    [18]
    PHUNG V M, NGUYEN V M, PHAN T H. Hermite interpolation on algebraic curves in C2[J]. Indagationes Mathematicae, 2019, 30(5): 874-890. doi: 10.1016/j.indag.2019.07.001
    [19]
    HUSSAIN M Z, IRSHAD M, SARFRAZ M, et al. Interpolation of discrete time signals using cubic spline function[C]//Processings of the 19th International Conference on Information Visualisation. Piscataway: IEEE Press, 2015: 454-459.
    [20]
    HWANG S, BYUN J, PARK Y C. Performance comparison evaluation of speech enhancement using various loss functions[J]. The Journal of the Acoustical Society of Korea, 2021, 40(2): 176-182.
    [21]
    KOLBAEK M, TAN Z H, JENSEN J. On the relationship between short-time objective intelligibility and short-time spectral-amplitude mean-square error for speech enhancement[J]. IEEE-ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(2): 283-295. doi: 10.1109/TASLP.2018.2877909
    [22]
    SALEEM N, KHATTAK M I, NAWAZ A, et al. Perceptually weighted β-order spectral amplitude Bayesian estimator for phase compensated speech enhancement[J]. Applied Acoustics, 2021, 178: 108007. doi: 10.1016/j.apacoust.2021.108007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(431) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return