Volume 49 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
CHENG B P,FANG Y W,PENG W S,et al. Comprehensive performance evaluation of swarm intelligence algorithms based on improved radar graph method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2780-2789 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0726
Citation: CHENG B P,FANG Y W,PENG W S,et al. Comprehensive performance evaluation of swarm intelligence algorithms based on improved radar graph method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2780-2789 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0726

Comprehensive performance evaluation of swarm intelligence algorithms based on improved radar graph method

doi: 10.13700/j.bh.1001-5965.2021.0726
Funds:

National Natural Science Foundation of China (71801222,61973253) 

More Information
  • Corresponding author: E-mail:17792018598@163.com
  • Received Date: 02 Dec 2021
  • Accepted Date: 17 Jan 2022
  • Available Online: 31 Oct 2023
  • Publish Date: 15 Feb 2022
  • In order to solve the problem that traditional performance evaluation methods cannot accurately evaluate the performance of swarm intelligence algorithms, a comprehensive performance evaluation method for swarm intelligence algorithms based on the improved radar graph method was proposed. Six performance evaluation index models for swarm intelligence algorithm were established, including fitness evaluation time, optimization time, optimization stability, optimization accuracy, coverage, and coverage rate. The improved radar graph method was utilized to examine the complete performance of three widely-known swarm intelligence algorithms based on the aforementioned six indicators using common test functions. The simulation results show that the comprehensive proposed method of swarm intelligence algorithm based on the improved radar graph can reflect the comprehensive performance of swarm intelligence algorithm comprehensively and objectively, and provide theoretical basis for the performance analysis, optimization, and decision-making of swarm intelligence algorithm.

     

  • loading
  • [1]
    KAUR K, KUMAR Y. Swarm intelligence and its applications towards various computing: A systematic review[C]//2020 International Conference on Intelligent Engineering and Management. Piscataway: IEEE Press, 2020: 57-62.
    [2]
    BREZOČNIK L, FISTER I, PODGORELEC V. Swarm intelligence algorithms for feature selection: A review[J]. Applied Sciences, 2018, 8(9): 1521. doi: 10.3390/app8091521
    [3]
    DANESH M, SHIRGAHI H. A novel hybrid knowledge of firefly and pso swarm intelligence algorithms for efficient data clustering[J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(6): 3529-3538.
    [4]
    CHAI X Q. Task scheduling based on swarm intelligence algorithms in high performance computing environment[J]. Journal of Ambient Intelligence and Humanized Computing, 2020: 1-9.
    [5]
    LIN N, TANG J C, LI X W, et al. A novel improved bat algorithm in UAV path planning[J]. Computers, Materials & Continua, 2019, 61(1): 323-344.
    [6]
    GAN C, CAO W H, WU M, et al. A new bat algorithm based on iterative local search and stochastic inertia weight[J]. Expert Systems with Applications, 2018, 104: 202-212. doi: 10.1016/j.eswa.2018.03.015
    [7]
    AHMED A M, RASHID T A, SAEED S A M. Cat swarm optimization algorithm: A survey and performance evaluation[J]. Computational Intelligence and Neuroscience, 2020, 2020: 1-20.
    [8]
    REVATHI K, KRISHNAMOORTHY N. The performance analysis of swallow swarm optimization algorithm[C]//2015 2nd International Conference on Electronics and Communication Systems. Piscataway: IEEE Press, 2015: 558-562.
    [9]
    李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22): 1-12.

    LI Y L, WANG S Q, CHEN Q R, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22): 1-12(in Chinese).
    [10]
    张九龙, 王晓峰, 芦磊, 等. 若干新型智能优化算法对比分析研究[J]. 计算机科学与探索, 2022, 16(1): 88-105. doi: 10.3778/j.issn.1673-9418.2107028

    ZHANG J L, WANG X F, LU L, et al. Analysis and research of several new intelligent optimization algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 88-105(in Chinese). doi: 10.3778/j.issn.1673-9418.2107028
    [11]
    孙雅薇, 田建宇, 梁炜, 等. 基于雷达图法的通信网络效能可视化建模[J]. 计算机仿真, 2019, 36(10): 1-5. doi: 10.3969/j.issn.1006-9348.2019.10.001

    SUN Y W, TIAN J Y, LIANG W, et al. Visual modeling of communication network effectiveness based on radar chart[J]. Computer Simulation, 2019, 36(10): 1-5(in Chinese). doi: 10.3969/j.issn.1006-9348.2019.10.001
    [12]
    陈勇, 陈潇凯, 李志远, 等. 具有评价结果唯一性特征的雷达图综合评价法[J]. 北京理工大学学报, 2010, 30(12): 1409-1412.

    CHEN Y, CHEN X K, LI Z Y, et al. Method of radar chart comprehensive evaluation with uniqueness feature[J]. Transactions of Beijing Institute of Technology, 2010, 30(12): 1409-1412(in Chinese).
    [13]
    李青, 战仁军, 彭维仕. 基于雷达图的防暴武器系统作战效能评估方法[J]. 火力与指挥控制, 2020, 45(8): 186-190.

    LI Q, ZHAN R J, PENG W S. Operational effectiveness evaluation method of riot weapon systems[J]. Fire Control & Command Control, 2020, 45(8): 186-190(in Chinese).
    [14]
    程志友, 朱唯韦, 陶青, 等. 基于改进雷达图的配电系统电能质量评估方法[J]. 电测与仪表, 2019, 56(14): 34 -39.

    CHENG Z Y, ZHU W W, TAO Q, et al. Power quality evaluation method of distribution system based on improved radar chart[J]. Electrical Measurement & Instrumentation, 2019, 56(14): 34 -39(in Chinese).
    [15]
    DORIGO M, MANIEZZO V, COLORNI A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics Society, 1996, 26(1): 29-41. doi: 10.1109/3477.484436
    [16]
    YANG X S, HE X S. Bat algorithm: Literature review and applications[J]. International Journal of Bio-Inspired Computation, 2013, 5(3): 141. doi: 10.1504/IJBIC.2013.055093
    [17]
    KENNEDY J. Particle swarm optimization[C]//Encyclopedia of Machine Learning and Data Mining. Berlin: Springer, 2017: 967-972.
    [18]
    Dan Simon. 进化优化算法: 基于仿生和种群的计算机智能方法[M]. 陈曦 译. 北京: 清华大学出版社, 2018: 455-457.

    DAN S. Evolutionary optimization algorithms: Biologically inspired and population-based approaches to computer intelligence[M]. Chen Xi translated. Beijing: Tsinghua University Press, 2018: 455-457(in Chinese).
    [19]
    陈一昭, 姜麟. 蚁群算法参数分析[J]. 科学技术与工程, 2011, 11(36): 9080-9084.

    CHEN Y Z, JIANG L. Parametric study of ant colony optimization[J]. Science Technology and Engineering, 2011, 11(36): 9080-9084(in Chinese).
    [20]
    包子阳, 余继周, 杨杉. 智能优化算法及其MATLAB实例[M]. 第2版. 北京: 电子工业出版社, 2018: 95-97.

    BAO Z Y, YU J Z, YANG S. Intelligent optimization algorithm and its MATLAB example[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2018: 95-97 (in Chinese).
    [21]
    YANG X S. A new metaheuristic bat-inspired algorithm[C]//Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Berlin: Springer, 2010: 65-74.
    [22]
    CLERC M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation-CEC99. Piscataway: IEEE Press, 2002: 1951-1957.
    [23]
    杨博雯, 钱伟懿. 粒子群优化算法中惯性权重改进策略综述[J]. 渤海大学学报(自然科学版), 2019, 40(3): 274-288.

    YANG B W, QIAN W Y. Summary on improved inertia weight strategies for particle swarm optimization algorithm[J]. Journal of Bohai University (Natural Science Edition), 2019, 40(3): 274-288(in Chinese).
    [24]
    王凌峰, 姚依楠. 主观线性加权评价问题的新方法: 中位数层次分析法[J]. 系统科学学报, 2018, 26(1): 96-99.

    WANG L F, YAO Y N. A new method for subjective linear weighted evaluation: The median analytic hierarchy process[J]. Chinese Journal of Systems Science, 2018, 26(1): 96-99(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(8)

    Article Metrics

    Article views(630) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return