Volume 49 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
LI H Y,CHEN J,YU P F,et al. Bimodal text-guided image inpainting algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2547-2557 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0720
Citation: LI H Y,CHEN J,YU P F,et al. Bimodal text-guided image inpainting algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2547-2557 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0720

Bimodal text-guided image inpainting algorithm

doi: 10.13700/j.bh.1001-5965.2021.0720
Funds:

National Natural Science Foundation of China (62266049,62066046); “Famous Teacher” of Yunnan 10 000 Talents Program; Program of Yunnan Key Laboratory of Intelligent Systems and Computing (202205AG070003) 

More Information
  • Corresponding author: E-mail:pfyu@ynu.edu.cn
  • Received Date: 30 Nov 2021
  • Accepted Date: 16 Jan 2022
  • Available Online: 31 Oct 2023
  • Publish Date: 25 Jan 2022
  • A bimodal text-guided image inpainting model is proposed to address shortcomings of the existing image restoration algorithms, such as the restored results are poor and uncontrollable when repairing large areas of distortions due to lack of sufficient contextual information. The proposed algorithm introduces text labels as the control guide for restoration to ensure the overall and regional consistency of the inpainted results and to increase the controllable diversity of the results. Firstly, a dual bi-modal mask attention mechanism is designed to extract semantic information from the damaged region. Subsequently, the text image fusion process in the generator is deepened by a deep text-image fusion module, and the image-text matching loss is applied to maximize the semantic similarity between the generated images and the text. Finally, a projection discriminator is used to train the generated image with the original image to enhance the authenticity of the restored image. Quantitative and qualitative experiments are conducted on two datasets with textual labels. The experimental results demonstrate that the repaired images are consistent with the guidance text description, and various results can be generated according to various textual descriptions.

     

  • loading
  • [1]
    BERTALMIO M, SAPIRO G, CASELLES V, et al. Image inpainting[C]//Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. New York: ACM, 2000: 417-424.
    [2]
    胡循勇, 杨晓梅, 李昊怡, 等. 融合低秩和稀疏先验的结构性缺失图像修复[J]. 北京亚洲成人在线一二三四五六区学报, 2022, 48(5): 855-862.

    HUX Y, YANG X M, LI H Y, et al. Structural missing image inpainting based on low rank and sparse prior[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 855-862(in Chinese).
    [3]
    WANG X, ZHANG D, XING G. A novel image recovery method based on discrete cosine transform and matched blocks[J]. Nonlinear Dynamics, 2013, 73(3): 1945-1954. doi: 10.1007/s11071-013-0915-7
    [4]
    王兴元, 张继明. 一种基于混沌和汉明码的数字图像篡改检测及修复算法[J]. 物理学报, 2014, 63(2): 73-83.

    WANG X Y, ZHANG J M. A novel image authentication and recovery algorithm based on chaos and Hamming code[J]. Acta Physica Sinica, 2014, 63(2): 73-83(in Chinese).
    [5]
    XIA Z, WANG X, WANG C, et al. Subpixel-based accurate and fast dynamic tumor image recognition[J]. Journal of Medical Imaging and Health Informatics, 2018, 8(5): 925-931. doi: 10.1166/jmihi.2018.2390
    [6]
    LIN Z, ZHAO Z, ZHANG Z, et al. Weakly-supervised video moment retrieval via semantic completion network[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2020, 34(7): 11539-11546.
    [7]
    PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders: Feature learning by inpainting[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 2536-2544.
    [8]
    IIZUKA S, SIMO-SERRA E, ISHIKAWA H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 2017, 36(4): 1-14.
    [9]
    MA Y, LIU X, BAI S, et al. Coarse-to-fine image inpainting via region-wise convolutions and non local correlation[C]//Proceedings of the IJCAI International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2019: 3123-3129.
    [10]
    SHIN Y G, SAGONG M C, YEO Y J, et al. PEPSI++: Fast and lightweight network for image inpainting[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 252-265.
    [11]
    LIU H , JIANG B, XIAO Y, et al. Coherent semantic attention for image inpainting[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 4170-4179.
    [12]
    WANG N, WANG W, HU W, et al. Thank a mural inpainting based on multi-scale adaptive partial convolution and stroke-like mask[J]. IEEE Transactions on Image Processing, 2021, 30: 3720-3733. doi: 10.1109/TIP.2021.3064268
    [13]
    YAN Z, LI X, LI M, et al. Shift-Net: Image inpainting via deep feature rearrangement[C]//Proceedings of the European Conference on the Computer Vision. Berlin: Springer, 2018, 1: 1-17.
    [14]
    YU J, LIN Z, YANG J, et al. Free-form image inpainting with gated convolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 4471-4480.
    [15]
    李海燕, 黄和富, 郭磊, 等. 基于残缺图像样本的生成对抗网络图像修复方法[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(10): 1949-1958.

    LI H Y, HUANG H F, GUO L, et al. Image inpainting method based on incomplete image samples in generative adversarial network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1949-1958(in Chinese).
    [16]
    李海燕, 吴自莹, 郭磊, 等. 基于混合空洞卷积网络的多鉴别器图像修复[J]. 华中科技大学学报(自然科学版), 2021, 49(3): 40-45.

    LI H Y, WU Z Y, GUO L, et al. Multidiscriminator image inpainting algorithm based on hybrid dilated convolution network[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(3): 40-45(in Chinese).
    [17]
    徐涛, 周纪勇, 张国梁, 等. 场内外特征融合的残缺图像精细修复[J]. 光学精密工程, 2021, 29(10): 2481-2494. doi: 10.37188/OPE.20212910.2481

    XU T, ZHOU J Y, ZHANG G L, et al. Fine restoration of incomplete image with external features and image features[J]. Optics and Precision Engineering, 2021, 29(10): 2481-2494(in Chinese). doi: 10.37188/OPE.20212910.2481
    [18]
    张雪菲, 程乐超, 白升利, 等. 基于变分自编码器的人脸图像修复[J]. 计算机辅助设计与图形学学报, 2020, 32(3): 401-409.

    ZHANG X F, CHEN L C, BAI S L, et al. Face image restoration based on variational autoencoder[J]. Journal of Computer Aided Design and Graphics, 2020, 32(3): 401-409(in Chinese).
    [19]
    WALKER J, DOERSCH C, GUPTA A, et al. An uncertain future: Forecasting from static images using variational autoencoders[C]//Proceedings of the European Conference on the Computer Vision. Berlin: Springer, 2016: 835-851.
    [20]
    ZHANG C, CHAM T J, CAI J. Pluralistic image completion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 1438-1447.
    [21]
    NAZERI, NG E, JOSEPH T, et al. EdgeConnect: Generative image inpainting with adversarial edge learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 3265-3274.
    [22]
    ZHANG L, CHEN Q, HU B, et al. Text-guided neural image inpainting[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1302-1310.
    [23]
    SOHN K, LEE H, YAN X. Learning structured output representation using deep conditional generative models[J]. Advances in Neural Information Processing Systems, 2015, 28: 3483-3491.
    [24]
    ZHANG H, XU T, LI H, et al. StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 5907-5915.
    [25]
    DOERSCH C. Tutorial on variational autoencoders[EB/OL]. (2021-01-03)[2021-11-01].
    [26]
    BAO J, CHEN D, WEN F, et al. CVAE-GAN: Fine-grained image generation through asymm-etric training[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2745-2754.
    [27]
    XU T, ZHANG P, HUANG Q, et al. AttnGAN: Fine-grained text to image generation with attentional generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 1316-1324.
    [28]
    DUAN K, PARIKH D, CRANDALL D, et al. Discovering localized attributes for fine-grained recognition[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2012: 3474-3481.
    [29]
    LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]//Proceedings of the European Conference on the Computer Vision. Berlin: Springer, 2014: 740-755.
    [30]
    GUO X, YANG H, HUANG D. Image inpainting via conditional texture and structure dual generation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2021: 14134-14143.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(2309) PDF downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return