Volume 46 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
CAO Shuai, ZHANG Xiaowei, MA Jianweiet al. Trans-scale feature aggregation network for multiscale pedestrian detection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1786-1796. doi: 10.13700/j.bh.1001-5965.2020.0069(in Chinese)
Citation: CAO Shuai, ZHANG Xiaowei, MA Jianweiet al. Trans-scale feature aggregation network for multiscale pedestrian detection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1786-1796. doi: 10.13700/j.bh.1001-5965.2020.0069(in Chinese)

Trans-scale feature aggregation network for multiscale pedestrian detection

doi: 10.13700/j.bh.1001-5965.2020.0069
Funds:

National Natural Science Foundation of China 61902204

Natural Science Foundation of Shandong Province of China ZR2019BF028

More Information
  • Corresponding author: ZHANG Xiaowei, E-mail:xiaowei19870119@sina.com
  • Received Date: 02 Mar 2020
  • Accepted Date: 09 Apr 2020
  • Publish Date: 20 Sep 2020
  • Space scale variation of pedestrian instance is one of the main bottlenecks affecting pedestrian detection performance. For this issue, a Trans-Scale Feature Aggregation Network (TS-FAN) is proposed to effectively deal with multi-scale pedestrian detection. First, in view of the feature differences among different scale spaces, we introduce a scale compensation strategy based on multi-path Region Proposal Network (RPN). According to the effectiveness of the convolutional feature layers of different scales, a series of candidate regional scale sets are generated adaptively from the feature maps corresponding to the size of the receptive field. Second, considering the semantic complementarity of convolutional features at different levels, a trans-scale feature aggregation module is proposed to effectively aggregate with semantic robustness highllevel features and with accurate location information of low-level features and achieve enhanced representation ability of convolutional features, by aggregating horizontal connection, top-down path and bottom-up path. Finally, combining the multi-path RPN scale compensation strategy and trans-scale feature aggregation module, we construct a multi-scale pedestrian detection network by adaptive scale perception. The experimental results show that, compared with the state-of-the-art method TLL-TFA, the log-average miss rate of pedestrian detection on widely-used Caltech dataset is reduced to 26.21% (increased by 11.94%) for whole-scale pedestrians (above 20 pixel in height), and 47.30% (increased by 12.79%) for small-scale pedestrian (between 20-30 pixels in height). And the similar improvement is also achieved on ETH dataset with drastic scale variation.

     

  • loading
  • [1]
    REN S, HE K, GIRSHICK R, et al.Faster R-CNN: Towards real-time object detection with region proposal networks[C]//International Conference on Neural Information Processing Systems.Cambridge: MIT Press, 2015: 91-99.
    [2]
    LIU W, ANGUELOW D, ERHAN D, et al.SSD: Single shot multibox detector[C]//European Conference on Computer Vision.Berlin: Springer, 2016: 21-37.
    [3]
    ZHANG X W, CHENG L C, LI B, et al.Too far to see Not really!-Pedestrian detection with scale-aware localization policy[J].IEEE Transactions on Image Processing, 2018, 27(8):3703-3715. doi: 10.1109/TIP.2018.2818018
    [4]
    GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2014: 580-587.
    [5]
    DALAL N, TRIGGS B.Histograms of oriented gradients for human detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2014: 886-893.
    [6]
    种衍文, 匡湖林, 李清泉.一种基于多特征和机器学习的分级行人检测方法[J].自动化学报, 2012, 38(3):375-381.

    ZHONG Y W, KUANG H L, LING Q Q.Two-stage pedestrain detection based on multiple features and machine learning[J].Acta Automatica Sinica, 2012, 38(3):375-381(in Chinese).
    [7]
    SINGH B, DAVIS L.An analysis of scale invariance in object detection snip[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2018: 3578-3587
    [8]
    SINGH B, NAJIBI M, DAVIS L.SNIPER: Efficient multi-scale training[C]//International Conference on Neural Information Processing Systems.Cambridge: MIT Press, 2018: 9310-9320.
    [9]
    LIU S T, HUANG D, WANG Y H.Receptive field block net for accurate and fast object detection[C]//European Conference on Computer Vision.Berlin: Springer, 2018: 385-400.
    [10]
    LIU W, LIAO S C, HU W D, et al.Learning efficient single-stage pedestrian detectors by asymptotic localization fitting[C]//European Conference on Computer Vision.Berlin: Springer, 2018: 643-659. doi: 10.1007/978-3-030-01264-9_38
    [11]
    HE K Y, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2016: 770-778.
    [12]
    HONARI S, YOSINSKI J, VINCENT P, et al.Recombinator networks: Learning coarse-to-fine feature aggregation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2016: 5743-5752.
    [13]
    谭红臣, 李淑华, 刘彬, 等.特征增强的SSD算法及其在目标检测中的应用[J].计算机辅助设计与图形学学报, 2019, 31(4):63-69.

    TAN H C, LI S H, LIU B, et al.Feature enhancement SSD for object detection[J].Journal of Computer-Aided Design & Computer Graphics, 2019, 31(4):63-69(in Chinese).
    [14]
    LIN T Y, DOLLAR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2017: 2117-2125.
    [15]
    LIU S, QI L, QIN H F, et al.Path aggregation network for instance segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2018: 8759-8768.
    [16]
    ZHAO Q J, SHENG T, WANG Y T, et al.M2Det: A single-shot object detector based on multi-level feature pyramid network[C]//AAAI Conference on Artificial Intelligence.Menlo Park: AAAI Press, 2019, 33: 9259-9266.
    [17]
    LI Y, CHEN Y, WANG N, et al.Scale-aware trident networks for object detection[C]//IEEE International Conference on Computer Vision.Piscataway: IEEE Press, 2019: 6054-6063.
    [18]
    LI J, LIANG X, SHEN S M, et al.Scale-aware fast R-CNN for pedestrian detection[J].IEEE Transactions on Multimedia, 2017, 20(4):985-996.
    [19]
    DOLLA P, WOJEK C, SCHIELE B, et al.Pedestrian detection:An evaluation of the state of the art[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(4):743-761. doi: 10.1109/TPAMI.2011.155
    [20]
    ESS A, LEIBE B, GOOL L V.Depth and appearance for mobile scene analysis[C]//IEEE International Conference on Computer Vision.Piscataway: IEEE Press, 2007: 1-8.
    [21]
    SONG T, SUN L Y, XIE D, et al.Small-scale pedestrian detection based on topological line localization and temporal feature aggregation[C]//European Conference on Computer Vision.Berlin: Springer, 2018: 536-551.
    [22]
    王刚, 陈永光, 杨锁昌, 等.鲁棒的红外小目标视觉显著性检测方法[J].北京亚洲成人在线一二三四五六区学报, 2015, 41(12):2309-2318. doi: 10.13700/j.bh.1001-5965.2014.0834

    WAGN G, CHEN Y G, YANG S C, et al.Robust visual saliency detection method for infrared small target[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12):2309-2318(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0834
    [23]
    ZHOU P, NI B B, GENG C, et al.Scale-transferrable object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2018: 528-537.
    [24]
    李晓光, 付陈平, 李晓莉, 等.面向多尺度目标检测的改进Faster R-CNN算法[J].计算机辅助设计与图形学学报, 2019, 31(7):1095-1101.

    LI X G, FU C P, LI X L, et al.Improved Faster R-CNN for multi-scale object detection[J].Journal of Computer-Aided Design & Computer Graphics, 2019, 31(7):1095-1101(in Chinese).
    [25]
    裴伟, 许晏铭, 朱永英, 等.改进的SSD航拍目标检测方法[J].软件学报, 2019, 30(3):248-268.

    PEI W, XU Y M, ZHU Y Y, et al.The target detection method of aerial photography images with improved SSD[J].Journal of Software, 2019, 30(3):248-268(in Chinese).
    [26]
    许冰, 牛燕雄, 吕建明.复杂动态场景下目标检测与分割算法[J].北京亚洲成人在线一二三四五六区学报, 2016, 42(2):310-317. doi: 10.13700/j.bh.1001-5965.2015.0113

    XU B, NIU Y X, LYU J M.Object detection and segmentation algorithm in complex dynamic scene[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2):310-317(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0113
    [27]
    LIU W, LIAO S C, REN W Q, et al.High-level semantic feature detection: A new perspective for pedestrian detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2019: 5187-5196.
    [28]
    ZHANG S J, YANG J, SCHIELE B.Occluded pedestrian detection through guided attention in CNNs[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2018: 6995-7003.
    [29]
    ZHANG L L, LIN L, LIANG X D, et al.Is Faster R-CNN doing well for pedestrian detection [C]//European Conference on Computer Vision.Berlin: Springer, 2018: 618-634.
    [30]
    ZHANG S S, BENENSON R, SCHIELE B.Citypersons: A diverse dataset for pedestrian detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2017: 3213-3221.
    [31]
    DU X Z, EL-KHAMY M, LEE J, et al.Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection[C]//IEEE Winter Conference on Applications of Computer Vision.Piscataway: IEEE Press, 2017: 953-961.
    [32]
    WANG S G, CHENG J, LIU H J, et al.PCN: Part and context information for pedestrian detection with CNNs[EB/OL].(2018-04-12)[2020-01-27].
    [33]
    LIN C Z, LU J W, WANG G, et al.Graininess-aware deep feature learning for pedestrian detection[C]//European Conference on Computer Vision.Berlin: Springer, 2018: 732-747.
    [34]
    DU X, EL-KHAMY M, MORARIU V I, et al.Fused deep neural networks for efficient pedestrian detection[EB/OL].(2018-05-02)[2020-01-27].
    [35]
    BRAZIL G, LIU X M.Pedestrian detection with autoregressive network phases[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2019: 7231-7240.
    [36]
    DOLLAR P, TU Z, PERONA P, et al.Integral channel features[C]//British Machine Vision Conference, 2009: 91.1-91.11.
    [37]
    OUYANG W L, WANG X G.Joint deep learning for pedestrian detection[C]//IEEE International Conference on Computer Vision.Piscataway: IEEE Press, 2013: 2056-2063.
    [38]
    ZENG X Y, OUYANG W L, WANG X G.Multi-stage contextual deep learning for pedestrian detection[C]//IEEE International Conference on Computer Vision.Piscataway: IEEE Press, 2013: 121-128.
    [39]
    OUYANG W L, ZENG X Y, WANG X G.Modeling mutual visibility relationship in pedestrian detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2013: 3222-3229.
    [40]
    TIAN Y L, LUO P, WANG X G, et al.Pedestrian detection aided by deep learning semantic tasks[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2015: 5079-5087.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(1100) PDF downloads(200) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return