| Citation: | ZHANG Jieru, SU Feng, YUAN Peijiang, et al. Dual-spectrum intelligent temperature detection and health big data management system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1739-1746. doi: 10.13700/j.bh.1001-5965.2020.0063(in Chinese) |
Public safety video surveillance has played an important role in the battle against Corona virus disease 2019. Aimed at the characteristics of high population density, large flow of people, and the easy spread of Corona virus disease 2019 in China, an intelligent temperature detection and health big data management system combining visible and infrared dual-spectral imaging monitoring is established to achieve contactless rapid temperature detection and face recognition while wearing a mask, and to quickly complete the registration of personal information. The system has been deployed in multiple places, and has passed the verification of effectiveness and reliability. The measurement speed is fast and the response time is within 30 ms. The measurement accuracy is high and the measurement temperature error is within ±0.3℃. The measurement range is wide and the monitoring distance is 0.1-10 m. The face capture rate is over 99%, and the recognition rate is over 95%. The health big data management system can monitor and track back-to-back personnel movements in real time, perform statistical analysis on personnel information and epidemic development big data in multiple dimensions, conduct epidemic development trends modeling and prediction, improve epidemic prevention and control strategies based on the analysis results, and carry out accurate and efficient epidemic prevention and control.
| [1] |
颜培超.浅析公共安全视频监控大数据融合应用[J].数字技术与应用, 2019, 37(9):30-31.
YAN P C.Analysis on the application of large data fusion in public security video surveillance[J].Digital Technology and Application, 2019, 37(9):30-31(in Chinese).
|
| [2] |
黄凯奇, 陈晓棠, 康运锋, 等.智能视频监控技术综述[J].计算机学报, 2015, 38(6):1093-1118.
HUNG K Q, CHEN X T, KANG Y F, et al.Intelligent visual surveillance:A review[J].Chinese Journal of Computers, 2015, 38(6):1093-1118(in Chinese).
|
| [3] |
马培才.视频交换共享平台方案及应用场景研究[J].数字技术与应用, 2018, 36(6):78-79.
MA P C.Research on public security video sharing platform and application scenarios[J].Digital Technology and Application, 2018, 36(6):78-79(in Chinese).
|
| [4] |
赵路.加强我国公共卫生管理的若干建议[J].中国科学院院刊, 2020, 35(2):190-194.
ZHAO L.Suggestions on strengthening public health management in China[J].Bulletin of the Chinese Academy of Sciences, 2020, 35(2):190-194(in Chinese).
|
| [5] |
GUAN W J, NI Z Y, HU Y, et al.Clinical characteristics of 2019 novel coronavirus infection in China[J].The New England Journal of Medicine, 2020, 382:1708-1720. doi: 10.1056/NEJMoa2002032
|
| [6] |
冯云, 张旭光, 胡开强.人工髋关节与膝关节置换术后人体温差异性的研究分析[J].西北国防医学杂志, 2016, 37(6):409-411.
FENG Y, ZHANG X G, HU K Q.Analysis of the difference in human body temperature after artificial hip and knee replacements[J].Northwest Journal of National Defence Medical Science, 2016, 37(6):409-411(in Chinese).
|
| [7] |
王刚, 高晓丁, 唐明飞, 等.基于无线传感器网络的人体体温监测系统[J].纺织高校基础科学学报, 2012, 25(1):111-113.
WANG G, GAO X D, TANG M F, et al.The infrared temperature detection system based on wireless net[J].Journal of Basic Sciences of Textile Universities, 2012, 25(1):111-113(in Chinese).
|
| [8] |
高淑雅, 高跃清.一种基于卷积神经网络的雷达目标分类方法[J].信息技术, 2020, 44(1):91-94.
GAO S Y, GAO Y Q.Radar target classification based on convolutional neural network[J].Information Technology, 2020, 44(1):91-94(in Chinese).
|
| [9] |
张全, 盛妍, 吴佐平, 等.公共区域监控视频数据目标特征跟踪定位方法[J].自动化与仪器仪表, 2020(1):51-54.
ZHANG Q, SHENG Y, WU Z P, et al.Target tracking and location method for common area surveillance video data[J].Automation and Instrumentation, 2020(1):51-54(in Chinese).
|
| [10] |
寇大磊, 权冀川, 张仲伟.基于深度学习的目标检测框架进展研究[J].计算机工程与应用, 2019, 55(11):25-34.
KOU D L, QUAN J C, ZHANG Z W.Research on progress of object detection framework based on deep learning[J].Computer Engineering and Application, 2019, 55(11):25-34(in Chinese).
|
| [11] |
秦川.基于卷积神经网络的图像识别[J].电子技术与软件工程, 2020(1):98-99.
QIN C.Image recognition based on convolutional neural network[J].Electronic Technology and Software Engineering, 2020(1):98-99(in Chinese).
|
| [12] |
徐晓艳.人脸识别技术综述[J].电子测试, 2015(10):30-35.
XU X Y.Survey of face recognition technology[J].Electronic Test, 2015(10):30-35(in Chinese).
|
| [13] |
师立国.浅议红外测温仪工作原理及应用[J].东方企业文化, 2013(19):213.
SHI L G.Discussion on the working principle and application of infrared thermometer[J].Oriental Enterprise Culture, 2013(19):213(in Chinese).
|
| [14] |
李晓梅, 耿晓光.红外热成像技术及其在水务视频监控上的应用[J].工业控制计算机, 2014, 27(4):76-77.
LI X M, GENG X G.Application of infrared thermal imaging technology in video monitoring on the water[J].Industrial Control Computer, 2014, 27(4):76-77(in Chinese).
|
| [15] |
唐传佳, 周波, 王克杰, 等.一体化红外测温监测技术研究与应用[J].安徽电气工程职业技术学院学报, 2017, 22(1):118-121.
TANG C J, ZHOU B, WANG K J, et al.Research and application of integrated infrared temperature measurement monitoring technology[J].Journal of Anhui Vocational College of Electrical Engineering, 2017, 22(1):118-121(in Chinese).
|
| [16] |
曹彦鹏, 许宝杯, 何泽威, 等.红外热成像信号处理技术的研究进展[J].振动、测试与诊断, 2018, 38(2):219-227.
CAO Y P, XU B B, HE Z W, et al.Research advances in infrared thermography signal processing technology[J].Vibration, Test and Diagnosis, 2018, 38(2):219-227(in Chinese).
|
| [17] |
李霄.可见光图像与红外图像融合技术研究[D].成都: 电子科技大学, 2014.
LI X.Technical research of image fusion about visible and infrared image[D].Chengdu: University of Electronic Science and Technology of China, 2014(in Chinese).
|