| Citation: | LIU Cheng, XIE Rongjian, WANG Shiyue, et al. Visualization experimental study of compensation chamber of a propylene loop heat pipe[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 933-940. doi: 10.13700/j.bh.1001-5965.2019.0322(in Chinese) |
By the employment of quartz compensation chamber and high-speed camera, the visualization experimental study on the compensation chamber of a propylene loop heat pipe was implemented, which mainly focused on the variation of state of working fluid in the compensation chamber with the effect of the working fluid inventory and heat transfer capacity, and the effect of working fluid inventory on the heat transfer performance of the loop heat pipe. The results indicate that the optimal working fluid inventory for the loop heat pipe with volume of 51.4 mL is about 19.7 g. The liquid levels inside the compensation chamber are lower than the bayonet when the fluid inventory is less than the optimal one, intense two-phase heat exchange between the evaporator and the compensation chamber is confirmed by the observation of obvious condensation and flow of the liquid on the outer surface of the bayonet, and the condensation rate and flow velocity increase with the rise of heat transfer capacity; the heat transfer thermal resistance of the loop heat pipe decreases and the heat transfer capacity below 280 K increases with the rise of the fluid inventory. With an optimal fluid inventory, the liquid level inside the compensation chamber immerses the bayonet and is close to the top of the evaporator core, and thus the best performance is obtained: a maximum power of 40 W that can be transferred below 280 K and a corresponding thermal resistance of 2 K/W. Liquid levels inside the compensation chamber are higher than the top of the evaporator core when the fluid inventory is more than the optimal one. The heat transfer thermal resistance increases and the heat transfer capacity below 280 K decreases with the rise of the fluid inventory. The liquid distribution inside the compensation chamber and evaporator core has considerable effect on the heat leak between the evaporator and the compensation chamber, which is a significant factor for the influence of working fluid inventory on the performance of loop heat pipe.
| [1] |
MAYDANIK Y F.Loop heat pipes[J].Applied Thermal Engineering, 2005, 25(5):635-657.
|
| [2] |
KU J.Operating characteristics of loop heat pipes[C]//29th International Conference on Environmental System, 1999: 1999-01-2007.
|
| [3] |
GUO Y D, LIN G P, BAI L Z, et al.Experimental study on the supercritical startup of cryogenic loop heat pipes with redundancy design[J].Energy Conversion and Management, 2016, 118:353-363. doi: 10.1016/j.enconman.2016.04.022
|
| [4] |
柏立战, 林贵平.环路热管复合芯传热与流动特性分析[J].北京亚洲成人在线一二三四五六区学报, 2009, 35(12):1446-1450. http://bhxb.cqjj8.com/CN/abstract/abstract8587.shtml
BAI L Z, LIN G P.Analysis of heat transfer and flow characteristics of composite wicks of loop heat pipes[J].Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(12):1446-1450(in Chinese). http://bhxb.cqjj8.com/CN/abstract/abstract8587.shtml
|
| [5] |
VASILIEV L, LOSSOUARN D, ROMESTANT C, et al.Loop heat pipe for cooling of high-power electronic components[J].International Journal of Heat and Mass Transfer, 2009, 52(1-2):301-308. doi: 10.1016/j.ijheatmasstransfer.2008.06.016
|
| [6] |
RIEHL R R, DUTRA T.Development of an experimental loop heat pipe for application in future space missions[J].Applied Thermal Engineering, 2005, 25(1):101-112. doi: 10.1016/j.applthermaleng.2004.05.010
|
| [7] |
HOANG T T.Performance demonstration of hydrogen advanced loop heat pipe for 20-30 K cryocooling of far infrared sensors[C]//Proceedings of SPIE.Bellingham: SPIE, 2005: 1-10.
|
| [8] |
PASTUKHOV V G, MAYDANIK Y F.Low-noise cooling system for PC on the base of loop heat pipes[J].Applied Thermal Engineering, 2007, 27(5):894-901.
|
| [9] |
LU X Y, HUA T C, LIU M J, et al.Thermal analysis of loop heat pipe used for high-power LED[J].Thermochimica Acta, 2009, 493(1):25-29.
|
| [10] |
柏立战, 林贵平, 张红星.环路热管稳态建模及运行特性分析[J].北京亚洲成人在线一二三四五六区学报, 2006, 32(8):894-898. doi: 10.3969/j.issn.1001-5965.2006.08.005
BAI L Z, LIN G P, ZHANG H X.Steady state modeling of loop heat pipes and operating characteristics analysis[J].Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(8):894-898(in Chinese). doi: 10.3969/j.issn.1001-5965.2006.08.005
|
| [11] |
YAN T, ZHAO Y N, LIANG J T, et al.Investigation on optimal working fluid inventory of a cryogenic loop heat pipe[J].International Journal of Heat and Mass Transfer, 2013, 66:334-337. doi: 10.1016/j.ijheatmasstransfer.2013.07.043
|
| [12] |
DU C H, BAI L Z, LIN G P, et al.Determination of charged pressure of working fluid and its effect on the operation of a miniature CLHP[J].International Journal of Heat and Mass Transfer, 2013, 63:454-462. doi: 10.1016/j.ijheatmasstransfer.2013.03.079
|
| [13] |
张红星, 林贵平, 丁汀, 等.环路热管温度波动现象的实验分析[J].北京亚洲成人在线一二三四五六区学报, 2005, 31(2):116-120. http://bhxb.cqjj8.com/CN/abstract/abstract10331.shtml
ZHANG H X, LIN G P, DING T, et al.Experimental investigation on temperature oscillation of loop heat pipes[J].Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(2):116-120(in Chinese). http://bhxb.cqjj8.com/CN/abstract/abstract10331.shtml
|
| [14] |
MO Q, LIANG J T.Operational performance of a cryogenic loop heat pipe with insufficient working fluid inventory[J].International Journal of Refrigeration, 2006, 29(4):519-527. doi: 10.1016/j.ijrefrig.2005.10.011
|
| [15] |
HOSSAIN M M. Experimental study on thermal performance and visualization of loop heat pipe[D].Greensboro: North Carolina A&T State University, 2013.
|
| [16] |
MO D C, ZOU G S, LU S S, et al.A flow visualization study on the temperature oscillations inside a loop heat pipe with flat evaporator [C]//Proceedings of the ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic MicroSystems.New York: ASME, 2013: 1-6.
|
| [17] |
NEMEC P, MALCHO M.Distribution of heat flux by working fluid in loop heat pipe[C]//10th Anniversary International Conference on Experimental Fluid Mechanics, 2016, 114: 02081.
|
| [18] |
OKAMOTO A, HATAKENAKA R, MASE Y, et al.Visualization of a loop heat pipe using neutron radiography[J].Heat Pipe Science and Technology:An International Journal, 2011, 2(1-4):161-172. doi: 10.1615/HeatPipeScieTech.v2.i1-4.160
|