Volume 46 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
ZHANG Huan, LU Jianguang, TANG Xianghonget al. An improved DS evidence theory algorithm for conflict evidence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 616-623. doi: 10.13700/j.bh.1001-5965.2019.0264(in Chinese)
Citation: ZHANG Huan, LU Jianguang, TANG Xianghonget al. An improved DS evidence theory algorithm for conflict evidence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 616-623. doi: 10.13700/j.bh.1001-5965.2019.0264(in Chinese)

An improved DS evidence theory algorithm for conflict evidence

doi: 10.13700/j.bh.1001-5965.2019.0264
Funds:

Science and Technology Major Project of Guizhou Province [2013]6019

Project of Guizhou High-Level Study Abroad Talents Innovation and Entrepreneurship 2018.0002

Project of China Scholarship Council 201806675013

Open Fund of Guizhou Provincial Public Big Data Key Laboratory 2017BDKFJJ019

Guizhou University Foundation for the Introduction of Talent (2016) No. 13

More Information
  • Corresponding author: LU Jianguang, E-mail: jglu@gzu.edu.cn
  • Received Date: 28 May 2019
  • Accepted Date: 12 Sep 2019
  • Publish Date: 20 Mar 2020
  • The advantages of DS (Dempster-Shafer) evidence theory in dealing with uncertain information have been widely used in various fields. This paper proposes an improved DS evidence theory algorithm for the existence of evidence conflicts in traditional DS. Firstly, combined with the correlation limitation of Pearson correlation coefficient and the correction of zero factor of fusion process, the weight of distribution and the overall unrelated evidence body is greatly reduced, and the overall importance of the evidence body is corrected. Secondly, the DS combination rule calculation is performed to corrected basic probability assignment (BPA) to obtain the fusion result. Compared with the performance of other improved DS theory algorithms in solving common conflict evidence and the number of evidence body fusion, the proposed algorithm has faster convergence rate and higher fusion BPA on credible proposition, which proves the effectiveness of the proposed algorithm.

     

  • loading
  • [1]
    DEMPSTER A P.Upper and lower probabilities induced by a multivalued mapping[J]. Annals of Mathematical Statistics, 1967, 38(2):325-339.
    [2]
    SIKAI L, JUN Y.A satellite-borne SAR target recognition method based on supplementary feature fusion[C]//2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis(ICCCBDA).Piscataway, NJ: IEEE Press, 2018: 326-330.
    [3]
    JIA R S, LIU C, SUN H M, et al.A situation assessment method for rock burst based on multi-agent information fusion[J]. Computers & Electrical Engineering, 2015, 45:22-32.
    [4]
    XU X B, ZHENG J, XU D L, et al.Information fusion method for fault diagnosis based on evidential reasoning rule[J]. Control Theory and Applications, 2015, 32(9):1170-1182.
    [5]
    丁怡洁, 王社良, 赵歆冬.基于改进证据理论的结构损伤识别研究[J].振动与冲击, 2018, 37(2):108-113.

    DING Y J, WANG S L, ZHAO X D.Structural damage detection based on improved evidence theory[J]. Journal of Vibration and Shock, 2018, 37(2):108-113(in Chinese).
    [6]
    席在芳, 令狐强, 易畅, 等.基于改进冲突系数的证据理论组合新方法[J].中南大学学报(自然科学版), 2018, 49(7):134-143.

    XI Z F, LINGHU Q, YI C, et al.A novel combination of evidence theory based on improved conflict coefficient[J]. Journal of Central South University (Science and Technology), 2018, 49(7):134-143(in Chinese).
    [7]
    ZADEH L A.Review of a mathematical theory of evidence[J]. AI Magazine, 1984, 5(3):81-83.
    [8]
    SUN R, HUANG H Z, MIAO Q.Improved information fusion approach based on DS evidence theory[J]. Journal of Mechanical Science and Technology, 2008, 22(12):2417-2425.
    [9]
    胡昌华, 司小胜, 周志杰, 等.新的证据冲突衡量标准下的D-S改进算法[J].电子学报, 2009, 37(7):1578-1583.

    HU C H, SI X S, ZHOU Z J, et al.An improved D-S algorithm under the new measure criteria of evidence conflict[J]. Acta Electronica Sinica, 2009, 37(7):1578-1583(in Chinese).
    [10]
    LI S B, LIU G K, TANG X H, et al.An ensemble deep convolutional neural network model with improved D-S evidence fusion for bearing fault diagnosis[J]. Sensors, 2017, 17(8):1729.
    [11]
    LI Y B, CHEN J, YE F, et al.The improvement of D-S evidence theory and its application in IR/MMW target recognition[J]. Journal of Sensors, 2016(2016):1903792.
    [12]
    YAGER R R.On the Dempster-Shafer framework and new combination rules[J]. Information Sciences, 1987, 41(2):93-137. doi: 10.1016-0020-0255(87)90007-7/
    [13]
    孙全, 叶秀清, 顾伟康.一种新的基于证据理论的合成公式[J].电子学报, 2000, 28(8):117-119.

    SUN Q, YE X Q, GU W K.A new combination rules of evidence theory[J]. Acta Electronica Sinica, 2000, 28(8):117-119(in Chinese).
    [14]
    MURPHY C K.Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000, 29(1):1-9.
    [15]
    邓勇, 施文康, 朱振福.一种有效处理冲突证据的组合方法[J].红外与毫米波学报, 2004, 23(1):27-32.

    DENG Y, SHI W K, ZHU Z F.Efficient combination approach of conflict evidence[J]. Journal Infrared Millimeter and Waves, 2004, 23(1):27-32(in Chinese).
    [16]
    魏永超.基于皮尔逊系数的冲突证据合成新方法[J].电讯技术, 2012, 52(4):466-471.

    WEI Y C.A novel D-S combination method of conflicting evidences based on Pearson correlation coefficient[J]. Telecommunication Engineering, 2012, 52(4):466-471(in Chinese).
    [17]
    李弼程, 王波, 魏俊, 等.一种有效的证据理论合成公式[J].数据采集与处理, 2002, 17(1):33-36.

    LI B C, WANG B, WEI J, et al.An efficient combination rule of evidence theory[J]. Journal of Data Acquisition & Processing, 2002, 17(1):33-36(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(10)

    Article Metrics

    Article views(2549) PDF downloads(420) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return