Volume 46 Issue 5
May  2020
Turn off MathJax
Article Contents
YANG Yi, DENG Li, DUAN Ran, et al. A image reconstruction algorithm of transient sources based on combined sparsities of background and variation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 915-924. doi: 10.13700/j.bh.1001-5965.2019.0222(in Chinese)
Citation: YANG Yi, DENG Li, DUAN Ran, et al. A image reconstruction algorithm of transient sources based on combined sparsities of background and variation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 915-924. doi: 10.13700/j.bh.1001-5965.2019.0222(in Chinese)

A image reconstruction algorithm of transient sources based on combined sparsities of background and variation

doi: 10.13700/j.bh.1001-5965.2019.0222
Funds:

Key Research Program of Frontier Sciences, CAS QYZDY-SSW-JSC014

More Information
  • Corresponding author: DENG Li, E-mail: dengli@nssc.ac.cn
  • Received Date: 12 May 2019
  • Accepted Date: 06 Dec 2019
  • Publish Date: 20 May 2020
  • Radio interferometers can achieve high spatial resolution imaging by combining multiple groups of visibility data measured over long periods of time. However, the variable information of temporally variable source is missing. A image reconstruction algorithm of varied sources by sparse baseline aperture synthesis based on sparse constraint on direct sum of background and inter-frame difference is proposed. The brightness temperature at initial moment and the brightness temperature difference of adjacent moments are taken as the vector of solution to seek, and the brightness temperatures at different moments are the sums of them, which leads to the measuring equation of the brightness temperature at initial moment and the difference. Transient source images at different moments are reconstructed by solving the sparsity of brightness temperature at initial moment and brightness temperature difference of adjacent moments. The results of numerical experiments show that the proposed method matches the best on transient source in a local background and outperforms the existing methods on varying source in a global background.

     

  • loading
  • [1]
    LORIMER D R, KARASTERGIOU A, MCLAUGHLIN M A, et al.On the detectability of extragalactic fast radio transients[J].Monthly Notices of the Royal Astronomical Society, 2013, 436(1):L5-L9. doi: 10.1093/mnrasl/slt098
    [2]
    VAN HAARLEM M P, WISE M W, GUNST A W, et al.LOFAR:The low-frequency array[J].Astronomy & Astrophysics, 2013, 556:A2.
    [3]
    ZARKA P, GIRARD J, TAGGER M, et al.FAR: The LOFAR super station project in Nançay[C]//SF2A-2012: Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics, 2012: 687-694.
    [4]
    THOMPSON A R, MORAN J M.Interferometry and synthesis in radio astronomy[M].Berlin:Springer, 2017.
    [5]
    JOHNSON M D, LOEB A, SHIOKAWA H, et al.Measuring the direction and angular velocity of a black hole accretion disk via lagged interferometric covariance[J].The Astrophysical Journal, 2015, 813(2):132.
    [6]
    LAW C J, BOWER G C, BURKE-SPOLAOR S, et al.Realfast:Real-time, commensal fast transient surveys with the very large array[J].The Astrophysical Journal(Supplement Series), 2018, 236(1):8. doi: 10.3847/1538-4365/aab77b
    [7]
    RAU U.Radio interferometric imaging of spatial structure that varies with time and frequency[C]//Image Reconstruction from Incomplete Data VII.Bellingham: SPIE, 2012: 1-12.
    [8]
    STEWART I M, FENECH D M, MUXLOW T W B.A multiple-beam CLEAN for imaging intra-day variable radio sources[J].Astronomy & Astrophysics, 2011, 535:A81.
    [9]
    SWINBANK J D, STALEY T D, MOLENAAR G J, et al.The LOFAR transients pipeline[J].Astronomy and Computing, 2015, 11:25-48. doi: 10.1016/j.ascom.2015.03.002
    [10]
    WENGER S, RAU U, MAGNOR M.A group sparsity imaging algorithm for transient radio sources[J].Astronomy and Computing, 2013, 1:40-45. doi: 10.1016/j.ascom.2013.02.002
    [11]
    CANDèS E J, TAO T.Decoding by linear programming[J].IEEE Transactions on Information Theory, 2005, 51(12):4203-4215. doi: 10.1109/TIT.2005.858979
    [12]
    CANDōS E J.Compressive sampling[C]//Proceedings of the International Congress of Mathematicians Madrid, 2006: 1433-1452.
    [13]
    DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. doi: 10.1109/TIT.2006.871582
    [14]
    WRIGHT S J, NOWAK R D, FIGUEIREDO M A.Sparse reconstruction by separable approximation[J].IEEE Transactions on Signal Processing, 2009, 57(7):2479-2493. doi: 10.1109/TSP.2009.2016892
    [15]
    LUSTIG M, DONOHO D L, SANTOS J M, et al.Compressed sensing MRI[J].IEEE Signal Processing Magazine, 2008, 25(2):72-82. doi: 10.1109/MSP.2007.914728
    [16]
    CHATTERJEE S, LAW C J, WHARTON R S, et al.A direct localization of a fast radio burst and its host[J].Nature, 2017, 541(7635):58-61. doi: 10.1038/nature20797
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(695) PDF downloads(330) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return