Volume 45 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
ZHOU Chi, LI Yinghui, ZHENG Wuji, et al. Nonlinear stability region determination and safety manipulation strategies for icing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 705-713. doi: 10.13700/j.bh.1001-5965.2018.0430(in Chinese)
Citation: ZHOU Chi, LI Yinghui, ZHENG Wuji, et al. Nonlinear stability region determination and safety manipulation strategies for icing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 705-713. doi: 10.13700/j.bh.1001-5965.2018.0430(in Chinese)

Nonlinear stability region determination and safety manipulation strategies for icing aircraft

doi: 10.13700/j.bh.1001-5965.2018.0430
Funds:

National Basic Research Program of China 2015CB755805

More Information
  • Corresponding author: LI Yinghui, E-mail: liyinghui66@163.com
  • Received Date: 13 Jul 2018
  • Accepted Date: 15 Oct 2018
  • Publish Date: 20 Apr 2019
  • Icing will destroy the dynamic performance of the aircraft and cause the safety envelope shrink, which seriously affects the flight safety. It is of great significance to study the changes of nonlinear stability region of the icing aircraft for reducing flight accidents. In this paper, the NASA's GTM is taken as the object aircraft. First, the dynamic model of longitudinal channel under icing condition is established based on polynomial fitting of the aerodynamic parameters and the icing factor model. Then, the change of flight state under different icing conditions and control commands is studied by bifurcation analysis method which used to guide flight manipulation. Considering the limitation of bifurcation analysis method, the nonlinear stability region of flight system is determined by differential manifold theory. And the nonlinear stability region is regarded as flight safety boundary. Finally, considering the icing condition, the bifurcation analysis method and differential manifold theory are combined to guide manipulation. Furthermore, the time domain validation of the manipulation is carried out. The results show that icing will shrink the safety boundary, and a slight disturbance may contribute to flight state outside the safety boundary. Moreover, with the increasing degree of icing, the stability of the aircraft will even change and the flight state will be difficult to maintain within the original safety boundary. At this moment, the flight state can be brought to the new safety boundary by changing the pilot's manipulation instruction. The research results are helpful for flight safety manipulation and boundary protection.

     

  • loading
  • [1]
    屈亮, 李颖晖, 袁国强, 等.基于相平面法的结冰飞机纵向非线性稳定域分析[J].航空学报, 2016, 37(3):865-872.

    QU L, LI Y H, YUAN G Q, et al.Longitudinal nonlinear stabilizing region for icing aircraft based on phase-phane method[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(3):865-872(in Chinese).
    [2]
    VIKRANT S, PETROS G.Aircraft autopilot analysis and envelope protection for operation under icing conditions[J].Journal of Guidance, Control, and Dynamics, 2004, 27(3):454-465. doi: 10.2514/1.1214
    [3]
    ROBERT B.Aircraft icing[EB/OL].(2013-05-01)[2015-05-08].
    [4]
    MERRET J M, HOSSAIN K N, BRAGG M B.Envelope protection and atmospheric disturbances in icing encounters: AIAA-2002-0814[R].Reston: AIAA, 2002.
    [5]
    JAN S, BERND K.Control based bifurcation analysis for experiments[J].Nonlinear Dynamics, 2008, 51(3):365-377. doi: 10.1007/s11071-007-9217-2
    [6]
    XIN Q, SHI Z K.Bifurcation analysis and stability design for aircraft longitudinal motion with high angle of attack[J].Chinese Journal of Aeronautics, 2015, 28(1):250-259. doi: 10.1016/j.cja.2014.12.022
    [7]
    KHATRI A K, SINHA N K.Aircraft maneuver design using bifurcation analysis and nonlinear control techniques: AIAA-2011-924[R].Reston: AIAA, 2011.
    [8]
    ENGELBRECHT J, PAUCK S, PEDDLE I.Bifurcation analysis and simulation of stall and spin recovery for large transport aircraft: AIAA-2012-4801[R].Reston: AIAA, 2012.
    [9]
    HARRY G K, JEAN T D.Nonlinear analysis of aircraft loss of control[J].Journal of Guidance, Control, and Dynamics, 2013, 36(1):149-162. doi: 10.2514/1.56948
    [10]
    LARISSA K, BEHZAD S.Estimation of region of attraction for polynomial nonlinear systems:A numerical method[J].ISA Transactions, 2014, 53(1):25-32. doi: 10.1016/j.isatra.2013.08.005
    [11]
    TAN W, PACKARD A.Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming[J].IEEE Transactions on Automatic Control, 2008, 53(2):565-570. doi: 10.1109/TAC.2007.914221
    [12]
    WEEKLY K, TINKA A.Autonomous river navigation using the Hamilton-Jacobi framework for underactuated vehicles[J].IEEE Transactions on Robotics, 2011, 30(5):1250-1255.
    [13]
    郑无计, 李颖晖, 屈亮, 等.基于正规形法的结冰飞机着陆阶段非线性稳定域[J].航空学报, 2017, 38(2):100-110.

    ZHENG W J, LI Y H, QU L, et al.Nonlinear stability region of icing aircraft during landing phase based on normal form method[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(2):100-110(in Chinese).
    [14]
    ZHENG W J, LI Y H, QU L, et al.Dynamic envelope determination based on differential manifold theory[J].Journal of Aircraft, 2017, 54(5):2005-2009. doi: 10.2514/1.C034258
    [15]
    袁国强, 李颖晖, 徐浩军, 等.积冰对飞机本体纵向非线性动力学稳定域的影响[J].西安交通大学学报, 2017, 51(9):153-158.

    YUAN G Q, LI Y H, XU H J, et al.Effect of ice accretion on aircraft's longitudinal nonlinear dynamic stability region[J].Journal of Xi'an Jiaotong University, 2017, 51(9):153-158(in Chinese).
    [16]
    MILLER R, RIBBENS W.The effects of icing on the longitudinal dynamics of an icing research aircraft: AIAA-1999-0636[R].Reston: AIAA, 1999.
    [17]
    BRAGG M B, HUTCHISON T, MERRET J, et al.Effect of ice accretion on aircraft flight dynamic: AIAA-2000-0360[R].Reston: AIAA, 2000.
    [18]
    POKHARIYAL D, BRAGG M B, HUTCHISON T, et al.Aircraft flight dynamics with simulated ice accretion: AIAA-2001-541[R].Reston: AIAA, 2001. doi: 10.2514/6.2001-541
    [19]
    曹启蒙, 李颖晖, 徐浩军.考虑作动器速率饱和的人机闭环系统稳定域[J].北京亚洲成人在线一二三四五六区学报, 2013, 39(2):1237-1253.

    CAO Q M, LI Y H, XU H J.Stability region for closed-loop pilot-vehicle system with actuator rate saturation[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2):1237-1253(in Chinese).
    [20]
    HINKE M O.Two-dimensional invariant manifolds in four-dimensional dynamical systems[J].Computers & Graphics, 2005, 29(2):289-297.
    [21]
    HALLER G, BERONVERA F.Geodesic theory of transport barriers in two-dimensional flows[J].Physica D Nonlinear Phenomena, 2012, 241(20):1680-1702. doi: 10.1016/j.physd.2012.06.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(835) PDF downloads(393) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return