Volume 44 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
QIAO Lei, BAI Junqiang, QIU Yasong, et al. High-efficiency solving method for steady transonic flow field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 470-479. doi: 10.13700/j.bh.1001-5965.2017.0216(in Chinese)
Citation: QIAO Lei, BAI Junqiang, QIU Yasong, et al. High-efficiency solving method for steady transonic flow field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 470-479. doi: 10.13700/j.bh.1001-5965.2017.0216(in Chinese)

High-efficiency solving method for steady transonic flow field

doi: 10.13700/j.bh.1001-5965.2017.0216
Funds:

National Natural Science Foundation of China 11502211

National Natural Science Foundation of China 11602199

More Information
  • Corresponding author: QIU Yasong, E-mail:qiuyasong@nwpu.edu.cn
  • Received Date: 10 Apr 2017
  • Accepted Date: 07 Jul 2017
  • Publish Date: 20 Mar 2018
  • The implicit solving approach of steady transonic flow field equals a Newton iteration for a nonlinear equation system. Globalization of Newton iteration is usually necessary in practice in order to fulfill the convergence requirement. In the framework of homogenous continuation, a Laplace operator based function continuation method which accelerates convergence of implicit solving of steady flow field is proposed. Considering that the steady flow field is usually initialized as uniform freestream condition, the Laplace operator is employed to speed up information propagation from wall boundary to internal flow field due to its ellipticity and to improve regularity of the problem due to its linearity and symmetric positive definite property. Thus the stability of Newton's method is improved then larger CFL number could be employed and finally the flow field solving efficiency is improved. Due to the complexity and nonlinearity of the flow field problem, a priori optimal nonlinear solving strategy is impossible to be obtained through theoretical analysis. Thus, the effect of Laplacian coefficient on convergence efficiency is investigated through numerical experiments on inviscid NACA0012 airfoil, turbulent RAE2822 airfoil and ONERA M6 3D wing test cases. Generally pragmatic combination of iteration parameters are also given and the proposed method is proved to gain over 20% saving in CPU computing time compared with the classic pseudo time marching method under transonic condition.

     

  • loading
  • [1]
    GEUZAINE P.Newton-Krylov strategy for compressible turbulent flows on unstructured meshes[J].AIAA Journal, 2001, 39(3):528-531.
    [2]
    WONG J S, DARMOFAL D L, PERAIRE J.The solution of the compressible Euler equations at low mach numbers using a stabilized finite element algorithm[J].Computer Methods in Applied Mechanics and Engineering, 2001, 190(43-44):5719-5737. doi: 10.1016/S0045-7825(01)00193-1
    [3]
    DENNIS J, SCHNABEL R.Numerical methods for unconstrained optimization and nonlinear equations[M].Philadelphia:Society for Industrial and Applied Mathematics, 1996:116-126.
    [4]
    MICHALAK C, OLLIVIER-GOOCH C.Globalized matrix-explicit Newton-GMRES for the high-order accurate solution of the euler equations[J].Computers & Fluids, 2010, 39(7):1156-1167.
    [5]
    BROWN D A, ZINGG D W. Advances in homotopy continuation methods in computational fluid dynamics: AIAA-2013-2944[R]. Reston: AIAA, 2013. doi: 10.2514/6.2013-2944
    [6]
    LYRA P R M, MORGAN K.A review and comparative study of upwind biased schemes for compressible flow computation.Part Ⅲ:Multidimensional extension on unstructured grids[J].Archives of Computational Methods in Engineering, 2002, 9(3):207-256. doi: 10.1007/BF02818932
    [7]
    KUZMIN D, LOHNER R, TUREK S.Flux-corrected transport:Principles, algorithms, and applications[M].2nd ed.Berlin:Springer, 2012:193-238.
    [8]
    KUZMIN D, LOHNER R, TUREK S.Flux-corrected transport:Principles, algorithms, and applications[M].Berlin:Springer, 2005:207-250.
    [9]
    COFFEY T S, KELLEY C T, KEYES D E.Pseudotransient continuation and differential-algebraic equations[J].SIAM Journal on Scientific Computing, 2003, 25(2):553-569. doi: 10.1137/S106482750241044X
    [10]
    KELLEY C T, LIAO L Z, QI L, et al.Projected pseudotransient continuation[J].SIAM Journal on Numerical Analysis, 2008, 46(6):3071-3083. doi: 10.1137/07069866X
    [11]
    CEZE M, FIDKOWSKI K J. A robust adaptive solution strategy for high-order implicit CFD solvers: AIAA-2011-3696[R]. Reston: AIAA, 2011.
    [12]
    CEZE M, FIDKOWSKI K J.Constrained pseudo-transient continuation[J].International Journal for Numerical Methods in Engineering, 2015, 102(11):1683-1703. doi: 10.1002/nme.v102.11
    [13]
    YOUNG D P, MELVIN R G, BIETERMAN M B, et al.Global convergence of inexact Newton methods for transonic flow[J].International Journal for Numerical Methods in Fluids, 1990, 11(8):1075-1095. doi: 10.1002/(ISSN)1097-0363
    [14]
    HICKEN J, BUCKLEY H, OSUSKY M, et al. Dissipation-based continuation: A globalization for inexact-Newton solvers: AIAA-2011-3237[R]. Reston: AIAA, 2011.
    [15]
    HICKEN J, ZINGG D. Globalization strategies for inexact-Newton solvers: AIAA-2009-4139[R]. Reston: AIAA, 2009. doi: 10.2514/6.2009-4139
    [16]
    POLLOCK S.A regularized Newton-like method for nonlinear PDE[J].Numerical Functional Analysis and Optimization, 2015, 36(11):1493-1511. doi: 10.1080/01630563.2015.1069328
    [17]
    KNOLL D A, KEYES D E.Jacobian-free Newton-Krylov methods:A survey of approaches and applications[J].Journal of Computational Physics, 2004, 193(2):357-397.
    [18]
    BLAZEK J.Computational fluid dynamics:Principles and applications[M].2nd ed. Oxford:Elsevier Science, 2005:227-270.
    [19]
    SPALART P R, ALLMARAS S R. A one-equatlon turbulence model for aerodynamic flows: AIAA-1992-0439[R]. Reston: AIAA, 1992.
    [20]
    POLYANIN A D, NAZAIKINSKII V E.Handbook of linear partial differential equations for engineers and scientists[M].2nd ed.Boca Raton:Chapman and Hall/CRC, 2015:1199-1231.
    [21]
    CEZE M, FIDKOWSKI K. Pseudo-transient continuation, solution update methods, and CFL strategies for DG discretizations of the RANS-SA equations: AIAA-2013-2686[R]. Reston: AIAA, 2013. doi: 10.2514/6.2013-2686
    [22]
    MULDER W A, LEER B V.Experiments with implicit upwind methods for the euler equations[J].Journal of Computational Physics, 1985, 59(2):232-246. doi: 10.1016/0021-9991(85)90144-5
    [23]
    张涵信.关于CFD高精度保真的数值模拟研究[J].空气动力学学报, 2016, 34(1):1-4.

    ZHANG H X.Investigation on fidelity of high order accuate numerical simulation for computational fluid dynamics[J].Acta Aerodynamica Sinica, 2016, 34(1):1-4(in Chinese).
    [24]
    VASSBERG J, JAMESON A. In pursuit of grid convergence, Part Ⅰ: Two-dimensional Euler solutions: AIAA-2009-4114[R]. Reston: AIAA, 2009. doi: 10.2514/6.2009-4114
    [25]
    COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE2822-Pressure distribution and boundary layer and wake measurements: AGARD-AR-138[R]. Reston: AGARD, 1979.
    [26]
    SCHMITT V, CHARPIN F. Pressure distributions on the ONERA-M6-wing at transonic mach numbers: AGARD-AR-138[R]. Reston: AGARD, 1979.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(750) PDF downloads(535) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return