Volume 44 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
WANG Tao, CAI Jinyan, MENG Yafeng, et al. Reliability analysis of bus-based embryonic electronic array based on multi-state system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 593-604. doi: 10.13700/j.bh.1001-5965.2017.0173(in Chinese)
Citation: WANG Tao, CAI Jinyan, MENG Yafeng, et al. Reliability analysis of bus-based embryonic electronic array based on multi-state system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 593-604. doi: 10.13700/j.bh.1001-5965.2017.0173(in Chinese)

Reliability analysis of bus-based embryonic electronic array based on multi-state system

doi: 10.13700/j.bh.1001-5965.2017.0173
Funds:

National Natural Science Foundation of China 61372039

National Natural Science Foundation of China 61601495

More Information
  • Corresponding author: MENG Yafeng, E-mail:myfrad@163.com
  • Received Date: 23 Mar 2017
  • Accepted Date: 09 Jun 2017
  • Publish Date: 20 Mar 2018
  • Through the analysis on structure characteristics and work principle of bus-based embryonic electronic array (BBEEA), the multi-state system theory is introduced to the reliability analysis of BBEEA, and the universal generating function (UGF) was used to model and analyze BBEEA reliability. Compared with BBEEA reliability model based on n/k system, correctness and validity of BBEEA reliability model based on multi-state system are verified. BBEEA reliability is analyzed based on the proposed multi-state system reliability model so as to guide the structure design of BBEEA according to reliability requirement. At the same time, in order to analyze the performance of BBEEA, comparative analysis of reliability between typical embryonic electronic array (EEA) and BBEEA is completed. The results of analysis show that reliability model based on multi-state system can analyze BBEEA reliability in nature, and it can associate working states and reliability of BBEEA, which has great guiding significance on structure design and preventive maintenance decision of BBEEA.

     

  • loading
  • [1]
    蔡金燕, 朱赛, 孟亚峰.一种新型的仿生电子细胞基因存储结构[J].电子学报, 2016, 44(8):1915-1923.

    CAI J Y, ZHU S, MENG Y F.A novel gene memory structure for bio-inspired electronic cell[J].Acta Electronica Sinica, 2016, 44(8):1915-1923(in Chinese).
    [2]
    GARIS H D. Genetic programming: Artificial nervous systems, artificial embryos and embryological electronics[C]//Proceeding of the 1st Workshop on Parallel Problem Solving from Nature, 1990: 117-123.
    [3]
    MANGE D, GOEKE M, MADON D, et al. Embryonics: A new family of coarse-grained field-programmable gate array with self-repair and self-reproducing properties[C]//Proceeding of 1996 IEEE International Symposium on Circuits and Systems. Piscataway, NJ: IEEE Press, 1996: 25-28.
    [4]
    YAO X, HIGUCHI T.Promises and challenges of evolvable hardware[J].IEEE Transaction on Systems, Man and Cybernetics, Part C, 1999, 29(1):87-97. doi: 10.1109/5326.740672
    [5]
    ORTEGA C, TYRRELL A. Biologically inspired reconfigurable hardware for dependable applications[C]//IEEE Half-day Colloquium on Hardware Systems for Dependable Applications. Piscataway, NJ: IEEE Press, 1997: 1-4.
    [6]
    ORTEGA C, TYRRELL A. Reliability analysis in self-repairing embryonic systems[C]//Proceeding of the 1st NASA/DoD Workshop on Evolvable Hardware. Piscataway, NJ: IEEE Press, 1999: 120-128.
    [7]
    李廷鹏. 基于总线结构的仿生自修复技术研究[D]. 长沙: 国防科学技术大学, 2012: 17-32.

    LI T P. Research on bio-inspired self-repairing technology based on bus structure[D]. Changsha: National University of Defense Technology, 2012: 17-32(in Chinese).
    [8]
    SAMIE M, DRAGFFY G, POPESCU A. Prokaryotic bio-inspired model for embryonic[C]//Proceedings of the 4th NASA/ESA Conference on Adaptive Hardware and Systems. Piscataway, NJ: IEEE Press, 2009: 163-170.
    [9]
    李岳, 王南天, 钱彦岭.原核细胞仿生自修复电路设计[J].国防科学技术大学学报, 2012, 34(3):154-157.

    LI Y, WANG N T, QIAN Y L.Self-healing circuit design inspired by prokaryotic cell[J].Journal of National University of Defense Technology, 2012, 34(3):154-157(in Chinese).
    [10]
    ZHU S, CAI J Y, MENG Y F.Partial-DNA cyclic memory for bio-inspired electronic cell[J].Genetic Programming and Evolvable Machines, 2016, 17(2):83-117. doi: 10.1007/s10710-015-9248-2
    [11]
    朱赛, 蔡金燕, 孟亚峰, 等.胚胎电子细胞中基因备份数目优选方法[J].北京亚洲成人在线一二三四五六区学报, 2016, 42(2):328-336.

    ZHU S, CAI J Y, MENG Y F, et al.Gene backup number selection method for embryonics cell[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2):328-336(in Chinese).
    [12]
    ZHANG Z, WANG Y R. Method to self-repair reconfiguration strategy selection of embryonic cellular array on reliability analysis[C]//2014 NASA/ESA Conference on Adaptive Hardware and Systems(AHS). Piscataway, NJ: IEEE Press, 2014: 225-232.
    [13]
    张砦, 王友仁.基于可靠性分析的胚胎硬件容错策略选择方法[J].系统工程理论与实践, 2013, 33(1):236-242. doi: 10.12011/1000-6788(2013)1-236

    ZHANG Z, WANG Y R.Guidelines to fault-tolerant strategy selection in embryonics hardware based on reliability analysis[J].Systems Engineering-Theory & Practice, 2013, 33(1):236-242(in Chinese). doi: 10.12011/1000-6788(2013)1-236
    [14]
    张砦, 王友仁.基于可靠性优化的芯片自愈型硬件细胞阵列布局方法[J].航空学报, 2014, 35(12):3392-3402. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201412022.htm

    ZHANG Z, WANG Y R.Method to reliability improvement of chip self-healing hardware by array layout reformation[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3392-3402(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201412022.htm
    [15]
    张砦, 王友仁.应用设计过程的胚胎硬件细胞单元粒度优化方法[J].航空学报, 2016, 37(11):3502-3511.

    ZHANG Z, WANG Y R.Cell granularity optimization method of embryonic hardware in application design process[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3502-3511(in Chinese).
    [16]
    林勇, 罗文坚, 钱海, 等.n×n阵列胚胎电子系统应用中的优化设计问题分析[J].中国科学技术大学学报, 2007, 37(2):171-176.

    LIN Y, LUO W J, QIAN H, et al.Analysis of optimization design in n×n array embryonic system applications[J].Journal of University of Science and Technology of China, 2007, 37(2):171-176(in Chinese).
    [17]
    张峻宾, 蔡金燕, 孟亚峰.基于EHW和RBT的电子电路故障自修复策略性能分析[J].北京亚洲成人在线一二三四五六区学报, 2016, 42(11):2423-2435.

    ZHANG J B, CAI J Y, MENG Y F.The performance of electronic circuit fault self-repair strategy based on EHW and RBT[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(11):2423-2435(in Chinese).
    [18]
    李春洋. 基于多态系统理论的可靠性分析与优化设计方法研究[D]. 长沙: 国防科学技术大学, 2010: 48-91.

    LI C Y. Research on reliability analysis and optimization based on the multi-state system theory[D]. Changsha: National University of Defense Technology, 2010: 48-91(in Chinese).
    [19]
    潘刚, 尚朝轩, 蔡金燕, 等.基于Semi-Markov模型的多态系统不完全维修决策研究[J].航空学报, 2017, 38(2):320178. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201702019.htm

    PAN G, SHANG C X, CAI J Y, et al.Research on imperfect maintenance decision for multi-syatem based on Semi-Markov model[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(2):320178(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKXB201702019.htm
    [20]
    LISNIANSKI A, FRENKEL I, DING Y.Multi-state system reliability analysis and optimization for engineers and industrial managers[M].Berlin:Springer, 2010:143-198.
    [21]
    王涛, 蔡金燕, 孟亚峰.总线细胞阵列中空闲细胞冗余数量研究[J].微电子学与计算机, 2016, 33(9):1-5.

    WANG T, CAI J Y, MENG Y F.Research on the redundant number of spare cells in bus-based embryonic array[J].Microelectronics & Computer, 2016, 33(9):1-5(in Chinese).
    [22]
    王涛, 蔡金燕, 孟亚峰, 等.胚胎电子阵列中空闲细胞的配置研究[J].航空学报, 2017, 38(4):320266.

    WANG T, CAI J Y, MENG Y F, et al.Research on the configuration of idle cells in embryonics electronic cell array[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(4):320266(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views(585) PDF downloads(323) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return