Volume 43 Issue 5
May  2017
Turn off MathJax
Article Contents
QIU Huachuan, JIANG Libiao. Numerical simulation of droplet motion on glass surface driven by ultrasonic travelling wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 908-917. doi: 10.13700/j.bh.1001-5965.2016.0395(in Chinese)
Citation: QIU Huachuan, JIANG Libiao. Numerical simulation of droplet motion on glass surface driven by ultrasonic travelling wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 908-917. doi: 10.13700/j.bh.1001-5965.2016.0395(in Chinese)

Numerical simulation of droplet motion on glass surface driven by ultrasonic travelling wave

doi: 10.13700/j.bh.1001-5965.2016.0395
Funds:

National Natural Science Foundation of China 51275175

Natural Science Foundation of Guangdong Province 2014A030313254

More Information
  • Corresponding author: JIANG Libiao,E-mail:jlb@scut.edu.cn
  • Received Date: 11 May 2016
  • Accepted Date: 10 Aug 2016
  • Publish Date: 20 May 2017
  • Aimed at the situations of the spreading and moving dynamics behavior of the droplet that plays an important role in industrial production and microfluidic chips, an elastic planar model based on the theory of ultrasonic travelling wave was proposed. The droplet on the elastic glass surface was driven by ultrasonic travelling wave generated by the inverse piezoelectric effect of piezoelectric ceramic. The droplet model was built with multi-physics field software COMSOL. Firstly, through the analysis of the ultrasonic travelling wave, the feasibility of the model was verified. During the period of 0 to 60 ms, the droplet behaves a shrinking-spreading sinusoidal oscillation motion driven by ultrasonic travelling wave. Then, the internal flow structure inside the droplet was also investigated. When the droplet radius spreads to the maximum and begins to shrink, the velocity inside the contact surface between the droplet and the substrate changes first. It shows that the change of the velocity field inside the droplet plays an important role in the motion of the contact line. There is a similar elliptic vortex in the flow field inside the droplet, which illustrates that the droplet motion is not a simple translation induced by shrinking-spreading, but a forward movement with rolling. Finally, we studied the dependency of the moving velocity of the droplet on the parameters (driving voltage, driving frequency and dynamic viscosity) via simulations. The results show that the moving velocity of the droplet is significantly influenced by the dynamic viscosity.

     

  • loading
  • [1]
    BECKER J, GRUN G.The thin-film equation:Recent advances and some new perspectives[J]. Journal of Physics Condensed Matter, 2005, 17(9):S291-S307. doi: 10.1088/0953-8984/17/9/002
    [2]
    SINGHAL V, GARIMELLA S V, RAMAN A.Microscale pumping technologies for microchannel cooling systems[J]. Applied Mechanics Reviews, 2004, 57(3):191. doi: 10.1115/1.1695401
    [3]
    魏长智, 魏守水, 张冲.超声行波微流体驱动的流动特性分析[J].应用基础与工程科学学报, 2013, 21(1):97-106. http://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201301012.htm

    WEI C Z, WEI S S, ZHANG C.Flow characteristics analysis of ultrasonic traveling wave micro-fluid driving[J]. Journal of Basic Science and Engineering, 2013, 21(1):97-106 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201301012.htm
    [4]
    SHI W, QIN J, YE N, et al.Droplet-based microfluidic system for individual Caenorhabditis elegans assay[J]. Lab on a Chip, 2008, 8(9):1432-1435. doi: 10.1039/b808753a
    [5]
    ABDELGAWAD M, WATSON M W, WHEELER A R.Hybrid microfluidics:A digital-to-channel interface for in-line sample processing and chemical separations[J]. Lab on a Chip, 2009, 9(8):1046-1051. doi: 10.1039/b820682a
    [6]
    YOUNG T.An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95:65-87. doi: 10.1098/rstl.1805.0005
    [7]
    WENZEL R N.Resistance of solid surface to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8):988-994.
    [8]
    CASSIE A B D, BAXTER S.Wettability of porous surfaces[J]. Transactions of Faraday Society, 1944, 40:546-551. doi: 10.1039/tf9444000546
    [9]
    CHAUDHURY M K, WHITESIDES G M.How to make water run uphill[J]. Science, 1992, 256(5063):1939-1541.
    [10]
    DANIEL S, CHAUDHURY M K.Rectified motion of liquid drops on gradient surfaces induced by vibration[J]. Langmuir, 2002, 18(9):3404-3407. doi: 10.1021/la025505c
    [11]
    DANIEL S, SIRCAR S, GLIEM J, et al.Ratcheting motion of liquid drops on gradient surfaces[J]. Langmuir, 2004, 20(10):4085-4092. doi: 10.1021/la036221a
    [12]
    王晓东, 彭晓峰, 陆建峰, 等.粗糙表面接触角滞后现象分析[J].热科学与技术, 2003, 2(3):230-234. http://www.cnki.com.cn/Article/CJFDTOTAL-RKXS200303008.htm

    WANG X D, PENG X F, LU J F, et al.Analysis of contact angle hysteresis on rough surfaces[J]. Journal of Thermal Science and Technology, 2003, 2(3):230-234(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-RKXS200303008.htm
    [13]
    石自媛, 胡国辉, 周哲玮.润湿性梯度驱动液滴运动的格子Bolzmann模拟[J].物理学报, 2010, 59(4):2595-2600. doi: 10.7498/aps.59.2595

    SHI Z Y, HU G H, ZHOU Z W.Lattice Boltzmann simulation of droplet motion driven by gradient of wettability[J]. Acta Physica Sinica, 2010, 59(4):2595-2600(in Chinese). doi: 10.7498/aps.59.2595
    [14]
    DAS A K, DAS P K.Multimode dynamics of a liquid drop over an inclined surface with a wettability gradient[J]. Langmuir, 2010, 26(12):9547-9555. doi: 10.1021/la100145e
    [15]
    周建臣, 耿兴国, 林可君, 等.微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变[J].物理学报, 2014, 63(21):216801. doi: 10.7498/aps.63.216801

    ZHOU J C, GENG X G, LIN K J, et al.Stick-slip transition of a water droplet vibrated on a superhydrophobic surface[J]. Acta Physica Sinica, 2014, 63(21):216801(in Chinese). doi: 10.7498/aps.63.216801
    [16]
    WALKER S W, SHAPIRO B.A control method for steering individual particles inside liquid droplets actuated by electrowetting[J]. Lab on a Chip, 2005, 5(12):1404-1407. doi: 10.1039/b513373b
    [17]
    WALKER S W, SHAPIRO B.Modeling the fluid dynamics of electrowetting on dielectric (EWOD)[J]. Journal of Microelectro-mechanical Systems, 2006, 15(4):986-1000. doi: 10.1109/JMEMS.2006.878876
    [18]
    WALKER S W, SHAPIRO B, NOCHETTO R H.Electrowetting with contact line pinning:Computational modeling and comparisons with experiments[J]. Physics of Fluids, 2009, 21(10):443-451.
    [19]
    LI F, MUGELE F.How to make sticky surface slippery:Contact angle hysteresis in electrowetting with alternating voltage[J]. Applied Physics Letters, 2008, 92(24):244108. doi: 10.1063/1.2945803
    [20]
    GAO Y, LI Y G, ZHANG J F.Two-dimensional actuation of liquid using surface acoustic wave[J]. Optics and Precision Engineering, 2009, 17(7):1548-1552.
    [21]
    BATCHELOR G K.An introduction to fluid dynamics[M]. Cambridge:Cambridge University Press, 2000:73-79.
    [22]
    BAL G, BEKIROGLU E.Servo speed control of travelling-wave ultrasonic motor using digital signal processor[J]. Sensors and Actuators A:Physical, 2004, 109(3):212-219. doi: 10.1016/j.sna.2003.10.019
    [23]
    NETO C, EVANS D R, BONACCURSO E, et al.Boundary slip in Newtonian liquids:A review of experimental studies[J]. Reports on Progress in Physics, 2005, 68(12):2859-2897. doi: 10.1088/0034-4885/68/12/R05
    [24]
    BLAKE T D, HAYNES J M.Kinetics of liquid/liquid displacement[J]. Journal of Colloid and Interface Science, 1969, 30(3):421-423. doi: 10.1016/0021-9797(69)90411-1
    [25]
    LAMB H.Hydrodynamics[J]. Hydrodynamics New York Dover, 1932, 6(4):181-185.
    [26]
    DONG L, CHAUDHURY A, CHAUDHURY M K.Lateral vibration of water drop and its motion on a vibrating surface[J]. European Physical Journal E, 2006, 21(3):231-242. doi: 10.1140/epje/i2006-10063-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views(1065) PDF downloads(747) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return