Volume 43 Issue 5
May  2017
Turn off MathJax
Article Contents
GUI Lijiang, LIU Yuelin. Basic thermodynamic property of oxygen in vanadium: A first-principles study[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 918-926. doi: 10.13700/j.bh.1001-5965.2016.0357(in Chinese)
Citation: GUI Lijiang, LIU Yuelin. Basic thermodynamic property of oxygen in vanadium: A first-principles study[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 918-926. doi: 10.13700/j.bh.1001-5965.2016.0357(in Chinese)

Basic thermodynamic property of oxygen in vanadium: A first-principles study

doi: 10.13700/j.bh.1001-5965.2016.0357
Funds:

National Natural Science Foundation of China 11575153

More Information
  • Corresponding author: LIU Yuelin, E-mail:liuyl@ytu.edu.cn
  • Received Date: 29 Apr 2016
  • Accepted Date: 20 May 2016
  • Publish Date: 20 May 2017
  • Vanadium (V) is identified as a promising candidate of the structural materials in fusion reactors. Experimental results have demonstrated that the impurity oxygen (O) has great influence on the structure and mechanical properties of V. Employing a first-principles method based on the density functional theory, we study the stability and diffusion property of impurity O as well as its interaction with defect vacancy in V. O atom is energetically favorable to occupy the octahedral insterstitial site with the solution energy of -4.942 eV. The intrinsic optimal diffusion route of O in the interstitial site is octahedral insterstitial site→tetrahedral insterstitial site→octahedral insterstitial site, and the diffusion activation energy is calculated to be 1.728 eV. The diffusion coefficients of O at the different temperature are systematically analyzed. We demonstrate that there is the strong attractive interaction between O and vacancy in V. The trapping energies of one and two O atoms are-0.484 eV and -0.510 eV, respectively. With the increase of the number of O atoms, the trapping energy of the third O becomes the positive value of 0.382 eV, meaning that vacancy cannot bind the additional O atom again. Thus, one vacancy can accommodate as many as two O atoms. It is revealed that the "O1-vacancy" and "O2-vacancy" clusters are easily formed in V. The current results can provide a very useful reference for V as a candidate structural material in a fusion reactor.

     

  • loading
  • [1]
    LIU Y L, ZHOU H B, JIN S, et al.Effects of H on electronic structure and ideal tensile strength of W:A first-principles calculation[J].Chinese Physics Letters, 2010, 27(12):127101. doi: 10.1088/0256-307X/27/12/127101
    [2]
    LIU Y L, JIN S, ZHANG Y, et a.l Interaction between impurity nitrogen and tungsten:A first-principles investigation[J].Chinese Physics B, 2012, 21(1):016105. doi: 10.1088/1674-1056/21/1/016105
    [3]
    LIU Y L, GAO A Y, LU W, et al. Optimal electron density mechanism for hydrogen on the surface and at a vacancy in tungsten[J].Chinese Physics Letters, 2012, 29(7):077101. doi: 10.1088/0256-307X/29/7/077101
    [4]
    LIU Y L, LU W, GAO A Y, et al.First-principles investigation on diffusion behaviours of H isotopes:From W(110) surface into bulk and in bulk W[J].Chinese Physics B, 2012, 21(12):126103. doi: 10.1088/1674-1056/21/12/126103
    [5]
    LIU Y L, ZHANG Y, HONG R J, et al.Study of theoretical tensile strength of Fe by a first-principles computational tensile test[J].Chinese Physics B, 2009, 18(5):1923-1930. doi: 10.1088/1674-1056/18/5/033
    [6]
    SMITH D L, CHUNG H M, LOOMIS B A, et al.Reference vanadium alloy V-4Cr-4Ti for fusion application[J].Journal of Nuclear Materials, 1996, 233-237:356-363. doi: 10.1016/S0022-3115(96)00231-0
    [7]
    CHUNG H M, LOOMIS B A, SMITH D L.Development and testing of vanadium alloys for fusion applications[J].Journal of Nuclear Materials, 1996, 239:139-156. doi: 10.1016/S0022-3115(96)00676-9
    [8]
    SATOU M, ABE K, KAYANO H.High-temperature deformation of modified V-Ti-Cr-Si type alloys[J].Journal of Nuclear Materials, 1991, 179:757-761.
    [9]
    SATO S, TANAKA T, HORI J, et al.Radioactivity of the vanadium-alloy induced by D-T neutron irradiation[J].Journal of Nuclear Materials, 2004, 329:1648-1652.
    [10]
    MARKOVSKIJ D V, FORREST R A, KOVALCHUK V D, et al.Experimental activation study of some Russian vanadium alloys with 14-MeV neutrons at SNEG-13 facility[J].Fusion Engineering and Design, 2001, 58:591-594.
    [11]
    BLOOM E E, CONN R W, DAVIS J W, et al.Low activation materials for fusion applications[J].Journal of Nuclear Materials, 1984, 122(1):17-26.
    [12]
    BUTTERWORTH G J, MCCARTHY K A, SMOLIK G R, et al.Safety and environmental aspects of vanadium alloys[J].Journal of Nuclear Materials, 1994, 212:667-672.
    [13]
    TSAI H, BRAY T S, MATSUI H, et al.Effects of low-temperature neutron irradiation on mechanical properties of vanadium-base alloys[J].Journal of Nuclear Materials, 2000, 283:362-366.
    [14]
    LOOMIS B A, SMITH D L, GARNER F A.Swelling of neutron-irradiated vanadium alloys[J].Journal of Nuclear Materials, 1991, 179:771-774.
    [15]
    OHNUKI S, TAKAHASHI H, KINOSHITA H, et al.Void formation and precipitation in neutron irradiated vanadium alloys[J].Journal of Nuclear Materials, 1988, 155:935-939.
    [16]
    LOOMIS B A, SMITH D L.Vanadium alloys for structural applications in fusion systems:A review of vanadium alloy mechanical and physical properties[J].Journal of Nuclear Materials, 1992, 191:84-91.
    [17]
    BORGSTEDT H U, GRUNDMANN M, KONYS J, et al.A vanadium alloy for the application in a liquid metal blanket of a fusion reactor[J].Journal of Nuclear Materials, 1988, 155:690-693.
    [18]
    BORGSTEDT H U, FEUERSTEIN H.The solubility of metals in Pb-17Li liquid alloy[J].Journal of Nuclear Materials, 1992, 191:988-991.
    [19]
    SMITH D L, CHUNG H M, LOOMIS B A, et al.Development of vanadium-base alloys for fusion first-wall—Blanket applications[J].Fusion Engineering and Design, 1995, 29:399-410. doi: 10.1016/0920-3796(95)80046-Z
    [20]
    LOOMIS B A, HULL A B, SMITH D L.Evaluation of low-activation vanadium alloys for use as structural material in fusion reactors[J].Journal of Nuclear Materials, 1991, 179:148-154.
    [21]
    SATO T, OKITA T, SEKIMURA N.Effects of solid transmutation and helium on microstructural evolution in neutron-irradiated vanadium[J].Journal of Nuclear Materials, 2002, 307:385-388.
    [22]
    谌继明, 室贺健夫, 许增裕, 等.聚变应用钒合金抗氢脆性能的合金化设计[J].金属学报, 2002, 38(8):839-843. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200208010.htm

    CHEN J M, MUROGA T, XU Z Y, et al.Alloying design for fusion application vanadium alloys based on hydrogen embrittlement resistance[J].Acta Metallurgica Sinica, 2002, 38(8):839-843(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200208010.htm
    [23]
    吴仲成, 彭述明, 杨茂年, 等.有效介质理论计算He原子在金属钒中的扩散行为[J].金属学报, 2004, 40(1):36-39. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200401006.htm

    WU Z C, PENG S M, YANG M N, et al.Calculation of diffusion barriers for helium atom in vanadium by effective medium theory[J].Acta Metallurgica Sinica, 2004, 40(1):36-39(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200401006.htm
    [24]
    ZHANG P B, ZHAO J J, QIN Y, et al.Stability and dissolution of helium-vacancy complexes in vanadium solid[J].Journal of Nuclear Materials, 2011, 419:1-8. doi: 10.1016/j.jnucmat.2011.08.023
    [25]
    ZHANG P B, ZHAO J J, QIN Y, et al Stability and migration property of helium and self defects in vanadium and V-4Cr-4Ti alloy by first-principles[J].Journal of Nuclear Materials, 2011, 413:90-94. doi: 10.1016/j.jnucmat.2011.03.031
    [26]
    KURTZ R J, ABE K, CHERNOV V M, et al.Recent progress on development of vanadium alloys for fusion[J].Journal of Nuclear Materials, 2004, 329:47-55.
    [27]
    ALKHAMEES A, ZHOU H B, LIU Y L, et al.First-principles investigation on dissolution and diffusion of oxygen in tungsten [J].Journal of Nuclear Materials, 2009, 393:508-512. doi: 10.1016/j.jnucmat.2009.07.012
    [28]
    ALKHAMEES A, ZHOU H B, LIU Y L, et al.Vacancy trapping behaviors of oxygen in tungsten:A first-principles study[J].Journal of Nuclear Materials, 2013, 437:6-10. doi: 10.1016/j.jnucmat.2013.01.317
    [29]
    KRESSE G, HAFNER J.Ab initio molecular dynamics for liquid metals[J].Physical Review B, 1993, 47(1):558-561. doi: 10.1103/PhysRevB.47.558
    [30]
    KRESSE G, FURTHMVLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Physical Review B, 1996, 54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169
    [31]
    PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple[J].Physical Review Letters, 1996, 77:3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [32]
    KRESSE G, JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method[J].Physical Review B, 1999, 59(3):1758-1775. doi: 10.1103/PhysRevB.59.1758
    [33]
    KITTEL C.Introduction to solid state physics[M].7th ed.New York:Wiley, 1996:23.
    [34]
    MONKHORST H J, PACK J D.Special points for Brillouin-zone integrations[J].Physical Review B, 1976, 13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188
    [35]
    HOGLUND L, AGREN J.Simulation of carbon diffusion in steel driven by a temperature gradient[J].Journal of Phase Equilibria and Diffusion, 2010, 31(3):212-215. doi: 10.1007/s11669-010-9673-0
    [36]
    WERT C, ZENER C.Interstitial atomic diffusion coefficients[J].Physical Review, 1949, 76(8):1169-1175. doi: 10.1103/PhysRev.76.1169
    [37]
    HENKELMAN G.A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J].Journal of Chemical Physics, 2000, 113(22):9901-9904. doi: 10.1063/1.1329672
    [38]
    FUKAI Y, ŌKUMA N.Formation of superabundant vacancies in Pd hydride under high hydrogen pressures[J].Physical Review Letters, 1994, 73(12):1640-1643. doi: 10.1103/PhysRevLett.73.1640
    [39]
    LU G, KAXIRAS E.Hydrogen embrittlement of aluminum:The crucial role of vacancies[J].Physical Review Letters, 2005, 94(15):155501. doi: 10.1103/PhysRevLett.94.155501
    [40]
    GAVINI V, BHATTACHARYA K, ORTIZ M.Vacancy clustering and prismatic dislocation loop formation in aluminum[J].Physical Review B, 2007, 76(18):180101. doi: 10.1103/PhysRevB.76.180101
    [41]
    DISTEFANO J R, DEVAN J H.Reactions of oxygen with V-Cr-Ti alloys[J].Journal of Nuclear Materials, 1997, 249:150-158. doi: 10.1016/S0022-3115(97)00217-1
    [42]
    HAUTOJARVI P, JOHANSSON J, VEHANEN A.Vacancy-carbon interaction in iron[J].Physical Review Letters, 1980, 44(20):1326-1329. doi: 10.1103/PhysRevLett.44.1326
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(1039) PDF downloads(420) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return