Volume 42 Issue 8
Aug.  2016
Turn off MathJax
Article Contents
ZHU Shuai, ZHOU Gang, LIU Xiaomei, et al. Symplectic weighted discontinuous Galerkin method with minimal phase-lag[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1682-1690. doi: 10.13700/j.bh.1001-5965.2015.0523(in Chinese)
Citation: ZHU Shuai, ZHOU Gang, LIU Xiaomei, et al. Symplectic weighted discontinuous Galerkin method with minimal phase-lag[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1682-1690. doi: 10.13700/j.bh.1001-5965.2015.0523(in Chinese)

Symplectic weighted discontinuous Galerkin method with minimal phase-lag

doi: 10.13700/j.bh.1001-5965.2015.0523
  • Received Date: 10 Aug 2015
  • Publish Date: 20 Aug 2016
  • Symplectic finite difference method (FDM) can keep the symplectic structure, and finite element method (FEM) can keep the symplectic structure as well as energy conservation for linear Hamiltonian systems. However, symplectic FDM and FEM still have phase errors for the numerical solution, so, the computational accuracy is not very well in time domain analysis. Symplectic weighted discontinuous Galerkin method with minimal phase-lag (WDG-PF) is proposed for Hamiltonian systems. This method is symplectic and can highly decrease the phase error, compared to traditional method for Hamiltonian systems. Meanwhile, WDG-PF can keep the conservation of energy as well as the symplectic structure of Hamiltonian systems. WDG-PF can solve the phase-lag problem of continuous Galerkin method, and WDG is symplectic by the technique of weight. Compared to symmetric symplectic(FSJS) algorithm, Runge-Kutta-Nystrom(SRKN) and symplectic partitioned Runge-Kutta (SPRK) methods which are aimed at increasing the accuracy of phase error, WDG-PF ismuch more accurate and increase the energy accuracy of Hamiltonian systems, tremedously. The phase error and Hamiltonian function error almost achieve the accuracy of computer. WDG-PF has the ultraconvergence point in each element. Especially, for the systems with high and low frequency signals, and seldom has a method can simulate the high and low frequency signals with a fixed time step, WDG-PF can effectively simulate the high and low frequency signals with large time step. The numerical experiments show its validity.

     

  • loading
  • [1]
    FENG K.Difference schemes for Hamiltonian formalism andsymplectic geometry[J].Journal of Computational Mathematics,1986,4(3):279-289.
    [2]
    FENG K.QIN M.Symplectic geometric algorithms for Hamiltonian systems[M].Heidelberg:Springer,2010:279-289.
    [3]
    CALVO M P.Numerical Hamiltonian problems[M].London:CRC Press,1994:315-356.
    [4]
    BRUSA L,NIGRO L.A one-step method for direct integration of structural dynamic equations[J].International Journal for Numerical Methods in Engineering,1980,15(5):685-699.
    [5]
    邢誉峰,杨蓉.单步辛算法的相位误差分析及修正[J].力学学报,2007,39(5):668-671.XING Y F,YANG R.Phase errors and their correction in symplectic implicit single-step algorithm[J].Chinese Journal of Theoretical and Applied Mechanics,2007,39(5):668-671(in Chinese).
    [6]
    邢誉峰,冯伟.李级数算法和显式辛算法的相位分析[J].计算力学学报,2009,26(2):167-171.XING Y F,FENG W.Phase analysis of Lie series algorithm and explicit symplectic algorithm[J].Chinese Journal of Computational Mechanics,2009,26(2):167-171(in Chinese).
    [7]
    陈璐,王雨顺.保结构算法的相位误差分析及其修正[J].计算数学,2014,36(3):271-290.CHEN L,WANG Y S.Phase error analysis and correction of structure preserving algorithms[J].Mathematica Numerica Sinica,2014,36(3):271-290(in Chinese).
    [8]
    VYVER H V D.A symplectic Runge-Kutta-Nystrom method with minimal phase-lag[J].Physics Letters A,2007,367(1):16-24.
    [9]
    MONOVASILIS T,KALOGIRATOU Z,SIMOS T E.Exponentially fitted symplectic runge-Kutta-Nyströmethods[J].Applied Mathematics & Information Sciences,2013,7(1):81-85.
    [10]
    MONOVASILIS T,KALOGIRATOU Z,SIMOS T E.Symplectic Partitioned Runge-Kutta methods with minimal phase-lag[J].Computer Physics Communications,2010,181(7):1251-1254.
    [11]
    SIMOS T E.A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schr dinger equation[J].Journal of Mathematical Chemistry,2011,49(10):2486-2518.
    [12]
    MONOVASILIS T,KALOGIRATOU Z,SIMOS T E.Two new phase-fitted symplectic partitioned Runge-Kutta methods[J].International Journal of Modern Physics C,2011,22(12):1343-1355.
    [13]
    刘晓梅,周钢,王永泓,等.辛算法的纠飘研究[J].北京亚洲成人在线一二三四五六区学报,2013,39(1):22-26.LIU X M,ZHOU G,WANG Y H,et al.Rectifying drifts of symplectic algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(1):22-26(in Chinese).
    [14]
    TANG W,SUN Y.Time finite element methods:A unified framework for numerical discretizations of ODEs[J].Applied Mathematics & Computation,2012,219(4):2158-2179.
    [15]
    汤琼,陈传淼.Hamilton系统的连续有限元法[J].应用数学和力学.2007.28(8):958-966 TANG Q,CHEN C M.Continuous finite element methods of Hamiltonian systems[J].Applied Mathematics and Mechanics,2007,28(8):958-966(in Chinese).
    [16]
    陈传淼,汤琼.Hamilton系统的有限元研究[J].数学物理学报:2011,31A(1):18-33.CHEN C M,TANG Q.Study of finite element for Hamiltonian systems[J].Acta Mathematica Scientia,2011,31A(1):18-33(in Chinese).
    [17]
    HU S F,CHEN C M.Runge-Kutta method finite element method and regular algorithms for Hamiltonian system[J].Applied Mathematics & Mechanics:English Edition,2013,34(6):747-760.
    [18]
    LI C H,CHEN C M.Ultraconvergence for averaging discontinuous finite elements and its applications in Hamiltonian system[J].Applied Mathematics & Mechanics:English Edition,2011,32(7):943-956.
    [19]
    DELFOUR M,HAGER W,TROCHU F.Discontinuous Galerkin methods for ordinary differential equations[J].Mathematics of Computation,1981,36(154):455-473.
    [20]
    WANG D,XIAO A,LI X.Parametric symplectic partitioned Runge-Kutta methods with energy-preserving properties for Hamiltonian systems[J].Computer Physics Communications,2013,184(2):303-310.
    [21]
    QUISPEL G R W,MCLAREN D I.A new class of energy-preserving numerical integration methods[J].Journal of Physics A Mathematical & Theoretical,2008,41(4):75-97.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1133) PDF downloads(412) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return