Volume 41 Issue 10
Oct.  2015
Turn off MathJax
Article Contents
RUAN Cunjun, DAI Jun, CHEN Shuyuan, et al. RF characteristics of multiple-gap resonant cavity for sheet beam extended interaction klystron[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1777-1784. doi: 10.13700/j.bh.1001-5965.2015.0207(in Chinese)
Citation: RUAN Cunjun, DAI Jun, CHEN Shuyuan, et al. RF characteristics of multiple-gap resonant cavity for sheet beam extended interaction klystron[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1777-1784. doi: 10.13700/j.bh.1001-5965.2015.0207(in Chinese)

RF characteristics of multiple-gap resonant cavity for sheet beam extended interaction klystron

doi: 10.13700/j.bh.1001-5965.2015.0207
  • Received Date: 10 Apr 2015
  • Rev Recd Date: 14 May 2015
  • Publish Date: 20 Oct 2015
  • The sheet beam extended interaction klystron (SBEIK) has the typical and attractive characteristics with the plan structural multiple-gap cavity and extended beam-wave interaction system. A type of novel miniaturization strong-coupling five-gap extended resonant cavity was investigated combined with the design of W-band SBEIK, which was compared with the traditional weak-coupling five-gap resonant and output cavity. The obtained characteristics shows that the strong-coupling five-gap cavity may have many advantages of resonant mode separation, radio frequency (RF) fields coupling in the gap and RF energy exporting, etc. Then, the degeneracy mode competition for the strong-coupling five-gap cavity was studied due to its axial period structures. The result shows that the frequency interval between the work mode and vicinal non-working mode is above 600MHz, which is higher enough than the required 100MHz bandwidth for the SBEIK. Finally, the 3D particle in cell (PIC) simulation software was used to calculate the beam-wave interaction for the strong-coupling five-gap extended output cavity, the expected high output power was observed with the corresponding performance and favorable stability. Thus, the research is very important for the physical design and engineering development of the SBEIK in the millimeter-wave and terahertz band with high power output radiation later.

     

  • loading
  • [1]
    Shin Y M,Wang J X,Barnett L R,et al.Particle-in-cell simulation analysis of a multicavity W-band sheet beam klystron[J].IEEE Transactions on Electron Devices,2011,58(1):251-258.
    [2]
    Pasour J,Nguyen K T,Wright E L,et al.Demonstration of a 100-kW solenoidally focused sheet electron beam for millimeter-wave amplifiers[J].IEEE Transactions on Electron Devices,2011,58(6):1792-1797.
    [3]
    Roitman A,Berry D,Steer B.State-of-the-art W-band extended interaction klystron for the CloudSat program[J].IEEE Transactions on Electron devices,2005,52(5):895-898.
    [4]
    Nguyen K T,Pershing D,Wright E L,et al.Sheet-beam 90GHz and 220GHz extend-interaction-klystron designs[C]∥2007 IEEE International Vacuum Electronics Conference (IVEC).Piscataway,NJ:IEEE Press,2007:1-2.
    [5]
    Nguyen K T,Pasour J,Wright E L,et al.Design of a G-band sheet-beam extended-interaction klystron[C]∥2009 IEEE International Vacuum Electronics Conference(IVEC).Piscataway,NJ:IEEE Press,2009:298-299.
    [6]
    Eppley K R,Herrmannsfeldt W B,Miller R H.Design of a Wiggler-focused,sheet beam klystron[C]∥Proceedings of the IEEE 1987 Particle Accelerator Conference.Piscataway,NJ:IEEE Press,1987:1809-1811.
    [7]
    Yu D,Wilson P.Sheet-beam klystron RF cavity[C]∥Proceedings of the IEEE 1993 Particle Accelerator Conference.Piscataway,NJ:IEEE Press,1993:2681-2683.
    [8]
    Solyga S,Schmolke M,Henke H.Mm-wave sheet beam klystron:Performance at different voltages[C]∥Proceedings of the IEEE 1999 Particle Accelerator Conference.Piscataway,NJ:IEEE Press,1999:1034-1036.
    [9]
    Scheitrum G,Caryotakis G,Burke A,et al.W-band sheet beam klystron research at SLAC[C]∥IEEE 2006 Internationl Vacuum Electronics Conference.Piscataway,NJ:IEEE Press,2006,481-482.
    [10]
    Garyotakis G.Design of a 11.4GHz,150MW,sheet beam,PPM-focused klystron[C]∥AIP Conference Proceedings.Melville,NY:AIP Publishing,2003,691:22-33.
    [11]
    Scheitrum G,Caryotakis G,Burke A,et al.W-band sheet beam klystron design[C]∥Conference Digest of the 2004 Joint 29th International Conference.Piscataway,NJ:IEEE Press,2004:525-526.
    [12]
    Burke A,Besong V,Granlund K,et al.W-band sheet beam klystron PCM focusing design[C]∥Proceedings of IVEC/IVESC 2006.Piscataway,NJ:IEEE Press,2006:485-486.
    [13]
    Cusick M,Atkinson J,Balkcum A.X-Band sheet beam klystron(XSBK)[C]∥IEEE International Vacuum Electronics Conference.Piscataway,NJ:IEEE Press,2009:296-297.
    [14]
    Zhao D,Lu X,Liang Y,et al.Researches on an X-Band sheet beam klystron[J].IEEE Transactions on Electron Devices,2014,61(1):151-158.
    [15]
    Shin Y M,Barnett L R,Luhmann N C.Quasi-optical output-cavity design for a 50-kW multicavity W-band sheet-beam klystron[J].IEEE Transactions on Electron Devices,2009,56(12):3196-3202.
    [16]
    Pasour J,Wright E,Nguyen K,et al.Sheet beam extended interaction klystron (EIK) in W band[C]∥IEEE 2013 International Vacuum Electronics Conference.Piscataway,NJ:IEEE Press,2013:1-2.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(962) PDF downloads(531) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return