Volume 40 Issue 7
Jul.  2014
Turn off MathJax
Article Contents
Ji Xiaoqin, Xiao Lihong, Chen Wenhuiet al. Optimal multi-impulse rendezvous based on T-H equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7): 905-909. doi: 10.13700/j.bh.1001-5965.2013.0488(in Chinese)
Citation: Ji Xiaoqin, Xiao Lihong, Chen Wenhuiet al. Optimal multi-impulse rendezvous based on T-H equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7): 905-909. doi: 10.13700/j.bh.1001-5965.2013.0488(in Chinese)

Optimal multi-impulse rendezvous based on T-H equations

doi: 10.13700/j.bh.1001-5965.2013.0488
  • Received Date: 21 Aug 2013
  • Publish Date: 20 Jul 2014
  • For rendezvous near an elliptic reference orbit, relative motion was described by T-H equations. One time-fixed fuel-optimum multi-impulse rendezvous method was proposed to determine the optimal impulse and its time. If J2 perturbation or the far initial relative distance was considered, the T-H equations linearization error couldn't be ignored, while the trajectory integration was more time-consuming and the optimal convergence rate decreased. For this problem, a new method was put forward that the current node state could be predicted with the orbit element computed by the previous one. It was very simple and valid for making optimal convergence faster. Based on the optimal impulse time, the trajectory numerical integration was carried out to verify the rendezvous precision. The results indicate that the terminal position has higher accuracy up to 75 m even under J2 perturbation and the initial relative distance of 1 000 km.

     

  • loading
  • [1]
    林来兴. 空间交会对接技术[M].北京:国防工业出版社, 1995:1 Lin Laixing.Space rendezvous and docking technology[M].Beijing:National Defence Industry Press, 1995:1(in Chinese)
    [2]
    Clohessy W H, Wiltshire R S.Terminal guidance system for satellite rendezvous[J].Journal of Aerospace Science, 1960, 27(9): 653-658
    [3]
    Lawden D F. Optimal trajectories for space navigation[M].London:Butterworths, 1963
    [4]
    Handelsman M, Lion P M.Primer vector on fixed-time impulse trajectories[J].AIAA Journal, 1968, 6(1):127-132
    [5]
    Lawden D F. Fundamentals of space navigation[J].Journal of the British Interplanetary Society, 1954, 13(2):87-101
    [6]
    Tschauner J, Hempel P.Rendezvous zu einem in elliptischer bahn umlaufenden ziel[J].Astronautica Acta, 1965, 11(2):104-109
    [7]
    Yamanaka k, Ankersen F.New state transition matrix for relative motion on an arbitrary elliptical orbit[J].Journal of Guidance, Control, and Dynamics, 2002, 25(1):60-66
    [8]
    Carter T, Humi M.Fuel-optimal rendezvous near a point in general Keplerian orbit[J].Journal of Guidance, Control, and Dynamics, 1987, 10(6):567-573
    [9]
    Carter T. New form for the optimal rendezvous equations near a Keplerian orbit[J].Journal of Guidance, Control, and Dynamics, 1990, 13(1):183-186
    [10]
    Carter T, Alvarez S A.Quadratic-based computation of four-impulse optimal rendezvous near circular orbit[J].Journal of Guidance, Control, and Dynamical Astronomy, 2003, 23(1):109-117
    [11]
    Carter T, Humi M.A new approach to impulse rendezvous near circular orbit[J].Celestial Mechanics and Dynamical Astronomy, 2012, 112(4):385-426
    [12]
    谌颖. 空间最优交会控制理论与方法研究[D].哈尔滨:哈尔滨工业大学, 1992 Chen Ying.Space optimal rendezvous control theory and methods[D].Harbin:Harbin Institute of Technology, 1992(in Chinese)
    [13]
    杨乐平, 朱彦伟, 黄涣.航天器相对运动轨迹规划与控制[M].北京:国防工业出版社, 2010:110-124 Yang Leping, Zhu Yanwei, Huang Huan.Spacecraft relative motion trajectory planning and control[M].Beijing:National Defence Industry Press, 2010:110-124(in Chinese)
    [14]
    荆武兴, 陈伟跃. 摄动椭圆参考轨道上的最优精确交会[J].中国空间科学技术, 2011, 31(2):16-24 Jing Wuxing, Chen Weiyue.Fuel-optimal precise rendezvous guidance law in elliptical reference orbit with J2 perturbation[J].Chinese Space Science and Technology, 2011, 31(2):16-24(in Chinese)
    [15]
    宋旭民, 范丽, 陈勇.考虑轨道摄动影响的多冲量交会规划方法研究[J].航天控制, 2011, 29(4):71-74 Song Xumin, Fan Li, Chen Yong.The research on the multi-impulse rendezvous trajectory planning with orbit perturbation[J].Aerospace Control, 2011, 29(4):71-74(in Chinese)
    [16]
    谭丽芬. 赤道椭圆交会轨道规划与制导方法[D].长沙:国防科学技术大学, 2011 Tan Lifen.Rendezvous trajectory planning and guidance approach for equatorial elliptical orbit[D].Changsha:National University of Defense Technology, 2011(in Chinese)
    [17]
    Gim D W, Alfriend K T.State transition matrix of relative motion for the perturbed non circular reference orbit[J].Journal of Guidance, Control, and Dynamics, 2003, 26(6):956-971
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1864) PDF downloads(765) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return